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Abstract This work investigates power and performance trade-offs for Web servers on
a state-of-the-art, high-density, power-efficient SeaMicro SM15k cluster by AMD. We
relied on the concept of virtual power states (VPSs), a combination of CPU utilization
rate to the P/C power states available in modern processors, and on our global optimiza-
tion algorithm called Slack Recovery, to deploy an adaptive global power management
system in a production environment. The main contributions of this paper are twofold.
First, it presents the Slack Recovery algorithm deployed on a real cluster, composed
of 25 SeaMicro nodes. The algorithm finds a P-state and a utilization rate for each
CPU node to minimize power under a minimum performance requirement. Second,
it proposes a novel mechanism to control utilization rates in each server, a key aspect
on our power/performance optimization system which enables the implementation of
the VPS concept in practice. Experimental results show that our Slack Recovery-based
system can reduce up to 6.7 % of the power consumption when compared to policies
usually deployed in SeaMicro production systems.
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1 Introduction

The shift towards increasing demand in computational resources has forced companies
to build facilities hosting hundreds of thousands of computers called data centers.
A variety of services, from search (e.g., Google and Yahoo), to e-commerce (e.g.,
Amazon and e-Bay), to stock trading (e.g., Fidelity and e-Trade) and media streaming
(e.g., YouTube) rely on the computing capabilities of data centers. This comes at a price
of higher operational costs, which include the management of these installations, the
electricity costs, and environmental impacts due to the increased power consumption.

The power associated with the IT equipment in a data center includes the power of
the servers, the power required by the cooling, and auxiliary equipment (e.g., power
distribution units, switching, back up power). The power consumption of the actual
server drives the power needs for auxiliary equipment and cooling; thus, reducing
server power has a direct effect on reducing data center power as a whole. Furthermore,
saving energy implies in reducing costs as the total cost of ownership of a data center
is proportional to its power consumption.

Data centers efficiency can be measured using a metric called power usage effective-
ness (PUE), which is calculated by dividing the total electric power used in a facility
by the power brought to the computing units (e.g., computers, networking equipment).
In 2009, Schulz claimed that 50 % of electrical power was spent on cooling in a typical
data center [31]. By 2006, the PUE of 85 % of data centers was about 2, that is, for
each watt used for computation, other additional two watts were spent by cooling and
auxiliary equipments [24]. By the end of 2010, Google’s data centers achieved an
overall PUE of 1.1 [30], a huge improvement.

In 2005, the energy consumption of total servers corresponded to about 0.6 % of
total electricity consumed in the USA. If auxiliary equipment was taken into account,
this share increases to 1.2 % [20]. In 2010, the electricity used in US data centers
accounted for between 1.7 and 2.2 % of total electricity use [21].

In this context, power-aware computing has emerged as a concern in data cen-
ters and, in this article, we follow-up on the work introduced in Bergamaschi et al.
[4], which presented the theoretical concept of virtual power states (VPSs), a com-
bination of utilization rate to the P/C power states available in modern processors,
and the Slack Recovery Algorithm. Now, we develop power optimization techniques
that can show significant improvements over best-of-breed, production-level dense
data centers, using the latest CPU architectures. We deploy them to a modern cluster
architecture composed of 25 nodes of SeaMicro servers [3], a state-of-the-art server
architecture by AMD. In order to do this, we develop a novel mechanism to control
utilization rates in each server, a key aspect for our power/performance optimization
heuristic.

The main focus of this article is to show how a Slack Recovery-based system
can be deployed in practice using a production, state-of-the-art, SeaMicro SM15k
cluster, instead of simulation. It shows how a utilization rate control mechanism can

123



1090 L. Piga et al.

be integrated to such a system. We compare our result to policies usually deployed in
SeaMicro production systems (i.e., the Linux governors [7,26]). The reader may find
more details about the optimization problem in our previous work [4]. To the best of
our knowledge, this is the first work to implement and evaluate power/performance
optimization algorithms in such high-density cluster architectures (e.g., the SeaMicro
SM15k). We believe the results are general and applicable to a wide range of data
center architectures.

This paper is organized as follows: Sect. 2 presents the related work and highlights
the main differences of our work. Section 3 gives an overview of the SeaMicro cluster
architecture used in this work; Sect. 4 introduces basic concepts on CPU power and
performance trade-offs. Section 5 presents the overall organization of our approach
and describes our experimental methodology, including the benchmarks used and the
algorithms. Section 6 explains how the theoretical concept of VPS is deployed in the
cluster. Section 7 presents the results and, finally, Sect. 8 draws our conclusions.

2 Related work

Over the last decade, there have been several research approaches tackling the problem
of power and performance trade-off and optimization in processors and data centers.
Most of these works presented algorithms for either turning processors on and off, or
applying dynamic voltage and frequency scaling (DVFS). We split the related work
into six categories that are explained next.

Server provision Filani et al. [15] used a closed-loop control algorithm to perform
power management, by acting on processor states and memory, to comply with certain
policy directives dictated by the upper level software. Their work focuses on increasing
the compute density by changing the server provision policy.

Performance optimizations under a power cap Other works intend to maximize per-
formance, given a power cap. Rajamani and Lefurgy [28] investigated the problem of
scheduling service requests among servers in a cluster to minimize energy consump-
tion known as Power-Aware Energy Distribution (PARD). The authors evaluated the
influence of the system-workload context on energy-saving schemes using a simple
on/off model for estimating the energy consumption of the cluster. In Chen et al. [9],
on/off node optimizations were applied in a multiple-application data center. The goal
was to determine how many servers and their operation frequencies should be used
for each application. All servers ran the same application at the same frequency.

Kant et al. [19] developed a simple task model based on QoS requirements and
presented Willow, a simple adaptive control scheme for energy-adaptive comput-
ing (EAC) that considered power and thermal constraints simultaneously. They dis-
cussed three scenarios for applying their model: (1) Cluster EAC, where clients submit
requests that required significant computation on the cluster side; (2) Client–Server
EAC, where observing QoS was an important requirement; and (3) Peer-to-Peer EAC,
where devices changed information through a network.

Winter et al. [35] presented scheduling and power management algorithms for
heterogeneous many-core architectures. Cochran et al. [10] presented a control tech-
nique to choose CPU voltage and frequency states in an optimal way to maximize
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performance under a power budget. Shen et al. [32] developed an operating system
feature that enabled request level power management. Meisner et al. [25] evaluated
the effects of switching CPU states to idle states for a short period of time on online
data-intensive services (e.g., Web search). The problem was more complicated than
other Web workloads, since it required fast response time and the data were distributed
across the nodes unabling nodes shutdown.

Microarchitectural power optimizations The in-core power management algorithms
in Isci et al. [18] dynamically control the processor parameters (frequency, voltage
and fetch throttling) to optimize power and/or performance according to on-the-fly
workloads. They report up to 38 % of power savings with 17.7 % in performance
degradation.

Leverich et al. [23] point that per-core power gating can be used as an additional
mechanism on multi-core processors. They show that by using their technique they can
reduce energy consumption in up to 40 %, maintaining the same performance level.
They also combined DVFS and per-core power gating and reported energy savings of
almost 60 %.

Local optimizations Linux has some built-in performance and power algorithms,
which are readily available on Linux and used in production systems. For this reason,
we consider them as a good baseline to our technique. One of them is performance
governor [7], where the CPU frequency is kept at the maximum when the CPU is
executing any instruction. When in idle, it is automatically put in power-safe states
(also known as C-States) by the CPU hardware [29].

Other algorithm is the Linux ondemand governor [7,26]. The governor samples the
CPU usage at small intervals (typically 10 ms) and decides which frequency to set
the CPU based on its utilization rate. When the CPU utilization rate is greater than
the threshold (typically 95 %) in an interval, the core frequency is set to the maximum
frequency. When the utilization is lower than the threshold, the core frequency is adjust
to a frequency state that is able to keep the CPU utilization rate at 80 %.

Server-level optimizations A survey of power management techniques developed
to explore and optimize the power/performance trade-off in data centers can be found
in Bianchini and Rajamony [6].

The work in Chase et al. [8] developed an agent-based approach, implemented in
the middleware, to turn off servers under low-load conditions while maintaining the
expected (or contracted) service level agreements (SLAs). Their approach is based on
turning servers on and off and distributing the work among the powered-up servers.
They could reduce energy in up to 29 % for a Web workload from the 2000s.

In Kusic et al. [22], dynamic resource provisioning is used in a virtualized com-
puting environment to reduce power consumption while maintaining SLA. This work
accounts for the switching costs incurred while provisioning (turning on/off) virtual
machines and explicitly encodes the corresponding risk in the optimization problem.
They report 26 % of power savings.

In Elnozahy et al. [12], five cluster-wide power management policies are evaluated.
The authors apply DVFS and node on/off techniques to reduce power consumption
during periods of reduced workload. The policies assume that the workload is balanced
across cluster nodes. Policies include: independent voltage scaling, where each node
manages its own power consumption; coordinated nodes’ voltage scaling actions;

123



1092 L. Piga et al.

turning nodes on/off, so that the minimum number of servers required by the workload
is kept active; and combinations of these techniques. The authors concluded that
between 33 and 50 % of cluster energy can be saved by applying the combined policy,
when compared to a cluster that is not power managed.

In their follow-up research [13], the authors use DVFS and request batching (where
the servicing of incoming packets is delayed until a specified batching timeout is
reached) management mechanisms to propose three policies to reduce energy con-
sumption in Web servers. They show that DVFS is better suited for moderately intense
workloads, while batching is better for low-intensity workloads. They also propose a
combined policy that reaches 17 to 42 % energy savings in all workloads, compared
to a base model with no optimization. A feedback-driven control framework is used
to adjust policy parameters.

Bertini et al. [5] present an optimal linear programming-based solution to the prob-
lem of dynamic cluster configuration combined with the use of feedback control theory
to control the quality of service (QoS) and dynamically select which servers turn on/off
or their operating frequencies. Two control theory schemes are compared, single-input
single-output (SISO) controller and single-input multiple-output (SIMO) controller.
The authors show that the SISO approach does not scale as an online solution, so they
apply a table-based off-line solution. On the other hand, the SIMO approach runs with
N-independent controllers, at a cost of loss of optimality. They report 40 % in power
reduction.

Abbasi et al. [2] propose TACOMA (two-tier architecture for cooling-computing
energy managements), a two-tier Internet data center scheme. The first tier adjusts
the number of active servers; the second tier predicts the workload arrival rate. The
algorithm evaluation is based on web traces and they reported energy savings of up to
40 % considering compute and cooling power.

Several of these works reported significant savings (30 % or more). Their contri-
butions were undoubtedly relevant for the CPU architectures and data center power
management techniques at the time. However, the state-of-the-art today is very differ-
ent. CPU power (both active and idle) in modern architectures (e.g., Intel Ivy Bridge)
is considerably lower than it was 5 years ago; thus, reducing significantly the gains
that simple on/off or DVFS techniques can achieve.

The approach in Bergamaschi et al. [4] used a simulation model of a data center to
evaluate the algorithms. Several practical implementation aspects are simplified in a
simulation environment. In this work, we implemented everything in an actual cluster;
thus, demonstrating not only that the approach is scalable, but can achieve significant
savings even considering the extremely power-efficient baseline starting point, such as
the SeaMicro cluster using Intel’s Xeon processors (Ivy Bridge architecture), running
Linux ondemand governor power management.

3 SeaMicro cluster overview

We deploy our Power and Performance Optimizations on an AMD’s SeaMicro
SM15000 (Fig. 1a) family of Fabric Compute Systems (SM15k) [3]. The SM15k is a
high-density cluster composed of compute nodes, networking, and storage on a single
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(a) (b)

Fig. 1 AMD’s SeaMicro SM15000 family of fabric compute systems. a SM15k front picture. b Freedom-
based motherboard

10 Rack Unit (RU). This system amortizes the power overhead of fixed system com-
ponents such as power supplies and fans among the cluster by sharing them among the
cluster nodes. Our SM15k has 64 server cards and consumes between 3.0 and 3.5 kW.

A server card is logically described in Fig. 1b. Each server card is composed of
DRAM, CPU+Chipset, and the Freedom ASIC. The latter includes network interfaces,
which removes the need of network adapters, cables, and switches, resulting in a
high-density and energy efficient cluster. It also implements an I/O virtualization
technology, which virtualizes the disks to the server nodes. Each node accesses the
disk as a virtual SATA disk. This feature reduces power and space without requiring
any special software and driver. In our configuration, we used server cards composed
of one Intel Xeon E3-1265Lv2 processor, 32 GB ECC DRAM, 8 × 1 Gbit network
interface card, connected with one virtual SATA disk. Each virtual disk was assigned
to one physical disk.

The Freedom ASIC enables interconnection of servers in a 3D torus topology with
1.28 Tbit bandwidth and less than 6 μs communication delay between any two server
nodes. Our SeaMicro SM15k processors are from the Intel Ivy Bridge family, and
feature special registers that provide estimates to the CPU power consumption. We
took advantage of the fast interconnection and the embedded power estimators when
implementing our power and performance optimization algorithms.

4 Background on power and performance trade-offs

In our previous work [4], we used Integer Linear programming (ILP) to find an opti-
mal solution to the problem of minimizing power by selecting discrete frequencies and
voltage levels (P-states) while maintaining performance above a minimum threshold.
This approach, however, did not scale for large number of nodes, because of the com-
plexity of the ILP problem. To overcome this limitation, we also developed a heuristic
algorithm called Slack Recovery and implemented it on the simulation environment.
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In this work, we took the Slack Recovery algorithm and adapted it to a real cluster
environment. We used it to select the P-states in each CPU node to optimize the overall
Web server cluster power, while satisfying a given level of total performance (i.e., a
performance threshold).

Current processor cores, such as the Intel Xeon E3-1265Lv2, have internal mech-
anisms in hardware and firmware to change its P/C-state according to its load and
power. According to ACPI tables found in operating systems, Intel Xeon E3-1265Lv2
has 11 P-states, or 11 different levels of frequency and voltage.

In our implementation, we are considering only the CPU power, since it is the
most important share of the power consumption. Moreover, it is the only device in our
system that provides mechanisms to trade-off power and performance, such as DVFS.
We based our choice on a characterization of Web servers done previously, which found
that disk, memory, and network power components do not vary too much comparing
to the CPU when a Web server workload is running; therefore, they can be considered
as a constant value [27] for the purpose of power optimizations. These findings are
also corroborated by Economou et al. [11] who showed that disk, network, disk, and
memory have about the same power consumption when running Web applications
(i.e., SPECweb) and when in idle.

In the SeaMicro environment, the disk and the network cards are virtualized. This
means that they are shared by computing nodes using the SeaMicro ASIC, which
amortizes their share of the total power. Power supplies and fans are also shared.
As a result, their power component is lower than on regular servers. Even though
memory power is an important component with a share of 20 to 25 % server power
consumption, power reduction on DRAM has been targeted only on the DRAM device
or compute system (e.g., reduce refresh rate and refresh power) [34] lacking power-
aware mechanisms, such as DVFS, whose Slack Recovery is based on.

Intel Xeon E3-1265Lv2 processors feature Running Average Power Limit (RAPL)
interfaces [17,29] which, among other capabilities, provide a power metering interface.
We developed a Linux kernel module that reads these power registers and provides a
power estimate for the CPU. According to Hackenberg et al. [16], RAPL interfaces
are suitable for low-resolution power consumption measurements, which is the case
of this paper.

Our performance metric is billions-of-instructions-per-second (B I P S). We devel-
oped an additional piece of software that uses libpfm-4.3 [1], to monitor the CPU
performance counters, allowing the measurement of number of instructions executed
as well as user, system, I/O, and idle times.

In our optimization problem, we observed that the CPU presents different power
consumption and different performance levels (measured in B I P S), under different
utilization rates. We define utilization rate as the ratio of the time that the CPU is doing
useful work (i.e., the CPU is not in idle mode) over the total amount of time in the
observation window.

We characterized one server node of our SeaMicro SM15k when running the Olio
benchmark to derive the Pareto Frontier shown in Fig. 2. We set all CPU cores to a
given P-state and ran the benchmark for an increasing number of concurrent users until
we found a number of users that makes the CPU operate at 100 % of utilization. At
this point, we ran the benchmark measuring power and instructions to determine the
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Fig. 2 Pareto Frontier of P-states Intel Xeon E3-1265Lv2

B I P S at maximum utilization rate and power at maximum utilization rate for each
P-state. We measured the power at idle for all P-states to obtain the idle power ratio.
For this CPU, the idle power is around 7.3 W for all P-states.

To better understand Fig. 2, consider a performance level of ten B I P S. This require-
ment can be achieved in five different configurations consuming from 16.7 to 22 W
as follows: P4-state under 100 % utilization rate, P3-state under 95 % utilization rate,
P2-state under 91 % utilization rate, P1-state under 86 % utilization rate, and P0-state
under 77 % utilization rate.

This observation leads us to add the utilization rate as an extra dimension to the
optimization problem. Therefore, our problem is to find a P-state and a utilization rate
for each CPU that minimizes power under a minimum performance requirement.

In Fig. 2, we derived an envelope curve, which is the Pareto Frontier of states. A
point in the Pareto Frontier will provide the power consumption and the performance
of the CPU under a P-state and a utilization rate. Moreover, there is no other state and
utilization rate that would result in higher performance or lower power. The union of
the Pareto Frontier states and the idle C-states constitutes the set of VPSs for a core.
These VPSs are the states used by our optimization algorithm.

5 Experimental methodology

We organized our system as follows: a Web server cluster, which handles HTTP
requests, and a power manager and load-balancer node that configures the cluster to
an optimal power state and distributes the load accordingly, as illustrated in Fig. 3.
Each Web server is composed of a back-end that runs MySQL 5.5.20, and a front-end
that executes the Nginx 1.0.10 Web server with PHP 5.3.5. The back-end and the
front-end run on the same node to fully utilize the CPU. The Web server application is
the CloudSuite Web server benchmark [14] running Olio, a Web 2.0 Web-based social
calendar. The power manager is the implementation of the power and performance
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Fig. 3 High-level description of system organization to deploy our global optimization algorithm

policy (e.g., Slack Recovery, Linux ondemand governor). The load balancer is the
HAProxy 1.5 [33], which is a fast, reliable, and open-source proxy solution.

The Web server cluster produces the sensor data, that is, readings of the power and
performance values of each node in the cluster. The manager then takes into account
the power optimization policy and the input workload to determine, on-the-fly, the
best configuration of power states for all CPU nodes (i.e., which CPU node needs to
have its power state or utilization rate changed). It then passes this new configuration
information and the new workload distribution back to the cluster, which are then
reconfigured while the workload is running.

The reconfiguration process is done in a fixed time window that needs to be tuned
to the variation of the workload. At the same time, it depends on the overall time
that it takes to do the following procedures: (1) gather the power and performance
information, (2) run the algorithm, and 3) configure the new power states and CPU
utilization. Assuming that this computation time is small (in the order of 250 ms for the
SeaMicro), the time window can be driven by the variation on the system workload.
Workloads that vary rapidly need a shorter time window, therefore the system can
reconfigure itself for the new loads. If the overall workload varies gently, then longer
workloads can be used.

In order to recreate a realistic workload stream, we obtained the load distribution
over time for a specific server cluster hosting the chat room from a large Internet
provider. This load is represented in Fig. 4, which shows the intra-day variation (for
37 h) of the load on the servers (where the load is represented as a percentage of the
maximum load supported by the whole server cluster). We modified CloudSuite Web
server benchmark [14] to follow this trend line creating a synthetic load representing
the same variation with the same characteristics and same relative load percentage
with respect to each experiment.
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Fig. 4 Intra-day variation of the load on the server

The remainder of this section describes our test bed, the software tools used to
evaluate the Slack Recovery implementation on a SM15k, the Slack Recovery
algorithm, and the methodology for predicting performance.

5.1 Scaling-out Web server benchmark

We used 63 server nodes configured as follows: 25 nodes running the Web servers;
37 nodes running as client machines; and one node executing the power manager and
the load balancer.

Although HAProxy is one of the fastest known proxy implementations, its TCP
stack saturated and the operating system quickly ran out of TCP ports when we made
all the client–server traffic pass through it. Therefore, we had to adapt the benchmark to
alleviate the proxy server traffic. This was accomplished by developing a mechanism
to emulate a reconfigurable network switching fabric. In this mechanism, the client
requests a connection to the proxy (I in Fig. 5). The proxy forwards the connection to
a server from the pool, selected based on a weighted round-robin policy (II in Fig. 5).
During the next 5 s, the follow-up requests coming from the same client are directly
addressed by the server selected in the first connection call (III in Fig. 5). Then, this
connecting process is repeated.

On a large data center, it is possible to probe reconfigurable network switching
fabrics that perform load balancing to implement our power management technique.
Therefore, our requirements are the provision of a mechanism to change the weights
of a round-robin load balancer and a metric that reports the amount of traffic redirected
for each server.

5.2 Slack recovery algorithm

This section describes the Slack Recovery algorithm, which performs global power
optimization. It was introduced in our previous work [4]. This heuristic algorithm is
based on the idea of slack recovery (in power) to determine a near optimal solution. At
first, it assigns power states to all CPU nodes to a state of the largest slack possible, that
is, they are set to the highest performance virtual state, so there will be performance
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Fig. 5 System configuration to avoid proxy saturation

slack to be exchanged for power. In this case, the algorithm will switch the states of
certain CPU nodes to decrease power and consequently lowering performance up to
a threshold.

The algorithm runs over a cluster model to find the optimal configuration, and at
the end it assigns the VPS to the physical cluster. The cluster model is a set of node
models, which are implementations of the Pareto Frontier described in Sect. 4. The
implementation needs a model, because it requires the estimation of power consump-
tion and performance for different configurations. The model also reduces significantly
the number of virtual state transitions.

For the sake of completeness in this text, we present the basic steps of the Slack
Recovery algorithm. For further details, the reader should refer to Bergamaschi et al.
[4]. Figure 6 lists the Slack Recovery pseudocode configured to minimize the power,
given a minimum performance. The algorithm starts by finding an initial configuration
state (line 5) that is able to sustain the minimum performance requirement. Next, it
executes the slack routine, where it tries to decrease the power by moving to a lower
performance state (lines 9 to 38). The routine iterates over all model nodes (lines 11
to 33), checks if the node could be moved to a higher VPS, which means a state with
lower performance and power consumption (line 14). The algorithm provisions the
performance (lines 16 and 17) in the cluster model and checks if it is greater than the
performance threshold (line 19). If it satisfies the performance constraint, it provisions
power and checks if it is lower than the minimum configuration so far (lines 22 to 24),
storing this node. After iterating over all nodes, the algorithm moves the selected node
(if any) to a higher VPS (lines 34 to 37). Finally, it assigns the VPS to the actual cluster
nodes (line 40).

Example 1 To understand how Slack Recovery compares to the Linux onde-
mand governor, consider the following example: Assume a cluster with five Web
servers composed of Intel Xeon E3-1265Lv2 processors. The power and performance
curve of this CPU is shown in Fig. 2. Suppose that the performance requirement is 54
B I P S. By using these input parameters to the Slack Recovery algorithm, a configu-
ration described in Table 1 is returned.
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Fig. 6 Slack Recovery algorithm pseudocode

Table 1 Server configuration
when Slack Recovery is used

Server A B C D E

P-state P1 P2 P1 P1 P1

Utilization rate 96 100 95 95 95

Power (W) 18.96 18.43 18.84 18.84 18.84

B I P S 10.97 10.76 10.86 10.86 10.86

The configuration shown in Table 1 is able to sustain a performance of 54 B I P S,
while the total power would be 93.9 W.

Figure 7 shows a pseudocode of the Linux ondemand governor implementation [26].
The algorithm works as follows: On every period of time, typically 10 ms, pool the

123



1100 L. Piga et al.

Fig. 7 Linux Ondemand governor pseudocode

CPUs in the system (line 2). If the utilization of the current CPU (line 5) is greater than
a threshold (typically 95 %), it increases the current CPU frequency to the maximum
(line 6). If the current utilization is lesser then the threshold (typically 95 %), jumps
directly to the lowest frequency that can sustain a CPU load of 80 %.

Since the cluster is homogeneous (i.e., servers’ CPUs are all the same), when
running the workload with the Linux ondemand governor, we set the weights of the
load balancer to the same value so that the load distribution among the server follows
a round-robin policy. Therefore, all the servers have about the same load in the steady
state.

If all servers have about the same load, for sustaining 54 B I P S, each server needs
to keep a throughput of 10.8 B I P S. By observing the power and performance curve
(Fig. 2), we can see that the only state that can keep the CPU 80 % busy, for a given
B I P S of 10.8 is P0. In this state, the CPU power is 23.1 W, and the total power for
all five servers is 115.5 W.

As shown, the Slack Recovery is able to configure the cluster to a performance
state that can sustain 54 B I P S dissipating 93.9 W, while the the Linux ondemand
governor dissipates 115 W to the same performance requirement.

5.3 Predicting the demanded performance

Slack Recovery configures the cluster in time window Πt to sustain the load that will
come in next time window Πt+1. Therefore, we need to implement a mechanism that
predicts the demanded performance for the next cycle. This performance is estimated
based on the number of sessions opened by the HAProxy, that is, the rate of start con-
nection requests to the proxy (I in Fig. 5) per second. On a big cluster, the session rate
could be read from the network switching fabric and this number could be translated
to the performance metric (i.e., B I P S).

Let us define session rate as the average number of sessions opened per time window.
Differently from any microarchitectural performance metrics (e.g., B I P S), the session
rate will always increase proportionally to the load even if some nodes are saturated
(i.e., operating at a 100 % utilization rate). Figure 8 shows the relation of session rate
to B I P S for different benchmark loads (i.e., number of users). We can see that, even
if the cluster is saturated, the session rate increases while B I P S tends to be constant
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Fig. 9 Variables used to predict the value of the next session rate, Srt+1

at the maximum utilization. We computed a linear regression of the points at which
the benchmark passes (i.e., the cluster is not saturated) to translate a given session rate
into B I P S.

The predictor is developed using simple linear extrapolation as follows: let Srt−1
be the session rate in time window Πt−1, and Srt be the session rate in time window
Πt . To estimate the session rate Srt+1 in time window Πt+1, we find a tangent line as
by using Eq. 1. Figure 9 illustrates the extrapolation method used by our predictor.

Srt+1 = α · (t + 1 − t) + Srt

= α + Srt (1)

where α is the slope of the line given by Eq. 2.

α = Srt − Srt−1

t − (t − 1)

= Srt − Srt−1 (2)
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Now replacing Eq. 2 in 1, Srt+1 can be calculated as follows:

Srt+1 = α + Srt

= Srt − Srt−1 + Srt (3)

= 2 · Srt − Srt−1

We also add an estimator error, εt , to amortize the prediction errors, calculated as
follows:

εt =
{

0 if t = 0
SrtActual − SrtPredicted if t > 0

(4)

Finally, the predicted session rate for the next time window is given by adding Eq. 3
to 4 as follows:

Srt+1 = 2 · Srt − Srt−1 + εt (5)

The performance prediction is done based on the variation of the system-wide work-
load. We empirically observed that the total workload, when measured at discrete time
intervals (i.e., 10 s in this work), tends to change smoothly with very few inversions.
In addition, even when the load variation changes direction, the prediction may get it
wrong for one or two intervals at most, before correcting itself.

After having predicted the performance for the next time window Πt+1, we used
this information as an input parameter for Slack Recovery. The algorithm returns a set
of VPS, and we set each node to the corresponding VPS. The next Section, discusses
the implementation of VPSs in our environment.

6 Virtual power state implementation

A VPS is a tuple containing a utilization rate and a P-state. While one can easily set a
node’s P-state; controlling each individual CPU utilization rate is more difficult. This
section discusses our approach to control the CPU utilization rate on a Web server
cluster.

In order to follow the remainder of this section, let us first define a number of
variables used in the ensuing formulation. Table 2 presents the variables and their
corresponding definitions.

Each server will handle a certain number of users until a point at which the CPU
utilization rate reaches 100 %. Thus, one way to control the CPU utilization is to change
the number of users connected to a server. Figure 10 shows the relation of the users
connected to a server and its corresponding utilization rate for the Olio benchmark
when the server is operating at highest frequency (P0-state). If the server is operating
at other P-states, we normalize the utilization to P0-state using Eqs. 7 and 8.

The CPU utilization rate (Ψ ) could be used to estimate the number of connected
users (μ) to a Web server using a second-order degree polynomial regression using
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Table 2 Variables used in the
remainder of this section

Symbol Definition

k P-state index
s Server index
μ Number of users
χs Number of connected users to the server s
νs Number of new users to the server s
Ψ Utilization rate
Ts,k Target utilization rate for server s running at Pk -state
Ks,k Current utilization rate for server s running at Pk -state
φTs Normalized target utilization rate for server s
φKs Normalized current utilization rate for server s
Δs φTs − φKs
εs Error in number of users
ηs Number of expected users to the next iteration
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Fig. 10 Number of benchmark users (μ) versus utilization rate (Ψ ). We use this relation to estimate the
number of users that should be connected to a given server node

least square method from the points in Fig. 10, as given in Eq. 6.

μ = f (Ψ ) = −0.98 + 15.03 · Ψ − 0.07 · Ψ 2 (6)

As we have shown in Sect. 5.1, the HAProxy will redirect a benchmark user to a
Web server following a weighted round-robin policy, and this user-server assignment
lasts 5 s. Therefore, we can control the number of users that will be redirected to a
given machine by changing the server weight.

Therefore, if we want to reduce the utilization rate of a server (s), we need to
reduce the number of new users (νs) arriving at the server and wait until the number of
connected users (χs) drops, which means that we need to wait until some connected
users finish their requests, entering into the connection phase again (where they request
another server to the proxy). Figure 11 shows the variation of the CPU utilization rate
over time when a server has 800 connected users, and we suddenly stop binding new
users to it. We can see that the CPU utilization rate over time can be modeled as a step
function, which facilitates the system modeling.
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Fig. 11 Behavior of the utilization rate on time when server stops receiving new users

Fig. 12 An overview of the components involved on the implementation of the utilization controller
mechanism

By using this methodology, we developed a utilization control agent (UCA) to
control the CPU utilization rate of each server on the Web server cluster. Figure 12
illustrates the elements involved in this implementation.

Each server (s) running at Pk-state is assigned to a target utilization rate (Ts,k) by the
Slack Recovery algorithm. The UCA receives from each server (s) its corresponding
current P-state (k) and its current utilization rate (Ks,k). Ts,k and Ks,k are normalized
to P0-state, since the performance at 100 % utilization rate is different among P-states.
This is accomplished using the information in Fig. 2, which displays the maximum
performance (B I P S100 %) for each P-state. Thus, the UCA calculates the normalized
target utilization rate, (φTs) and the normalized current utilization rate (φKs) as stated
by Eqs. 7 and 8.

φTs = Ts,k · B I P S100 %@Pk

B I P S100 %@P0
(7)

φKs = Ks,k · B I P S100 %@Pk

B I P S100 %@P0
(8)
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Fig. 13 Control loop approach for enforcing a CPU utilization rate

We develop a utilization controller as illustrated in Fig. 13. The controller box in
this figure is the HAProxy, which will have changed its weights associated to each
server. This will be translated to an increment or decrement to the number of new
users. The number of new users plus the number of connected users will impact the
utilization rate. The measured utilization rate of the server is compared to the target
utilization rate and will be translated to a new weight closing the loop.

Each CPU utilization controller is modeled as a simple feedback control system
from the Modern Control Theory. In such systems, the variable being controlled (i.e.,
CPU utilization rate) is measured and fed back to the controller to influence the con-
trolled variable. To develop our controller, we first derive equations to describe our
system and check for stability. The relations are described by Fig. 10, which shows the
behavior of the CPU utilization when users are added to the system, and by Fig. 11,
which shows how the utilization drops when we stop redirecting requests to the system.

A utilization controller converts φKs to number of connected users (χs) as follows:

χs = f (φKs), where f is given by Equation 6

Let Δs be the difference between the normalized target utilization rate and the
normalized current utilization rate as follows:

Δs = φTs − φKs

The error in number of users (εs) is calculated using the absolute value of Δs as
follows:

εs = f (|Δs |), where f is given by Equation 6

A Δs greater than zero means εs users must be added to the server s, to make it
reach the target utilization rate. Otherwise, εs users must be removed from the server.
Therefore, the number of expected users to the next iteration (ηs) on the s server is
given by Eq. 9.
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Fig. 14 Evaluation of the utilization controller mechanism for a fixed load. We see that the controller is
able to place the servers at the target utilization

ηs =
{

χs − εs if Δs < 0
χs + εs if Δs ≥ 0

(9)

The HAProxy allows weights from 0 to 254; thus, the UCA converts each ηs to a
HAProxy weight ws as follows:

ws = round

(
ηs

max(η)
· 254

)

In order to evaluate the utilization control mechanism, we set up a small cluster
composed of five servers. We configured the benchmark to generate a fixed input load
that would be sufficient to keep the servers’ utilization at their respective utilization
rate targets. Our problem is to distribute the load across the servers by adjusting the
load balancer weights to keep the servers’ utilization rate at their respective targets.
The controller will adjust the HAProxy weights to keep the utilization rates at their
targets. Figure 14 shows the behavior of the utilization along 100 s for a fixed load.

The controller exhibits some variation around the target utilization rate because
UCA is based on the number of users, but an user can do different types of operations.
For example, an operation of adding a person uses more CPU than a logout operation.
However, on the average the utilization rates converge to the targets as shown in the
dotted lines.

7 Experimental results

This section shows the evaluation of our power management mechanism in two dif-
ferent scenarios: Constant number of users and variable number of users, where we
configured the benchmark to follow the trend line described in Fig. 4.

We compared our mechanism to policies usually deployed in SeaMicro production
systems, that is, the Linux performance governor, where the P-state is kept at maximum
frequency when the CPU is executing, and to the Linux ondemand governor, where
the operating system changes the frequency automatically.
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Fig. 15 Average power per node for different number of Olio benchmark users. The Slack Recovery exhibits
higher power savings when the number of users is higher

We also evaluated a theoretical lower bound for our Slack Recovery heuristic, by
considering that at idle the CPU would not consume any energy. This limit is the
minimum power consumption on a hypothetical environment where the power in idle
(i.e., at 0 % of utilization rate) is zero and where we can turn on/off the idle CPUs
instantly (i.e., in zero time). This is a hypothetical environment because, in practice,
the idle power is 7.3 W and turning on/off machines might have detrimental effects on
the QoS due to the time necessary to switch the node back on.

7.1 Constant number of users

The first set of experiments was to evaluate the Slack Recovery implementation under
constant number of users. Our 25 Web server node cluster supports up to 20,000 Olio
users, when the front-end (PHP + nginx) and the back-end (MySQL) are running on
the same machine. We ran the benchmark nine times changing the number of users
on each execution. The different number of users impacts the CPU cluster utilization
rates and the power and performance optimization space. Figure 15 shows the average
power per server for different number of users.

Our results show that Slack Recovery can reduce the power consumption by up to
16 % when compared with the performance Linux governor, and 6.67 % when com-
pared with the Linux ondemand governor. The Slack Recovery increased the response
times. However, it was still able to meet the benchmark SLA constraints as shown in
Fig. 16.

We observed that the higher power savings are concentrated when the load is higher.
Slack Recovery trades power for performance keeping a minimum performance thresh-
old. Therefore, it increases the response time for the benchmark (although still meeting
the SLA requirement) and reduces the power consumption. When the load is low, there
is much idleness on the system, and the idle power dominates the total power con-
sumption.

Moreover, the SLA is indirectly taken into account when we set a performance
threshold for the Slack Recovery. The algorithm globally configures the cluster to
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Fig. 16 SLAs for the Olio benchmark operations. The SLA requirements in 90th percentile response time
must be 1 s for HomePage and Login; 2 s for EventDetail, PersonDetail, and TagSearch; 3 s for AddPerson;
and 4 s AddEvent. Note that, for all cases, Slack Recovery could meet these requirements

sustain such performance requirement. In this way, it does not try to optimize SLAs,
and it is possible that some requests get assigned to a CPU in a lower frequency,
but despite that, the system was able to keep up with the benchmark requirements. If
necessary to improve the SLA, we would need to make the performance requirements
tighter, which might impact on the energy as well.

7.2 Variable number of users

The next experiment evaluated the behavior of the algorithm under a variable number
of users. The 37-h load curve, taken from a real Internet cluster hosting the chat room,
shown in Fig. 4 was shrunk to 5 h by calculating the average number of users over a 7-h
time window to accelerate the experiments. The maximum number of users was set to
18,000 (about 90 % of the maximum capacity). The maximum follows the provision
standards that reserve some processing capacity to handle any utilization spikes.

Figure 17 illustrates the power consumption of the cluster along the benchmark
execution in this scenario. The results agree with those from the constant number
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Fig. 17 Cluster power variation along 5 h of benchmark execution. The Lower Bound is the minimum power
consumption that would result by, Slack Recovery, if the CPU power is zero watts when the utilization rate
is 0 %

of users, where the higher power savings are in the region of higher loads. Slack
Recovery was able to save 13.1 % of the power on average when compared with the
Linux performance governor, and 5.6 % when compared with the Linux ondemand
governor.

We also want to investigate the power behavior for each node. Figure 18 shows the
power consumption for the individual nodes along the benchmark execution for the
variable number of users.

The first observation is that three nodes (servers 22, 23, and 24) out of 25 are always
idle, as we can see in Fig. 18. This is related to the assumption that the maximum load
for the trend line curve corresponds to about 90 % of the maximum processing power
capacity of the cluster. The algorithm concentrates the processing power to some nodes
while others are placed in idle mode. This fact raises a question about the potential
of adding to the algorithm the capacity of powering on/off nodes. We extrapolate our
data to determine this value.

The extrapolation is done by setting power to zero instead of 7.3 W when the
utilization rate of a node is at 0 % in a given time window. This is the lower bound
showed in Fig. 18, because all idle nodes are considered off.

The lower bound corresponds to a reduction in power consumption of 39 % when
compared to the Linux performance governor, to 30 % when compared to the Linux
ondemand governor, and to 23 % to Slack Recovery.

On our SM15k cluster, a node takes about 5 min to be powered on. For this reason,
we did not consider the possibility to power on/off nodes at first sight. However, this
possibility is promising and could be feasible if we elaborate our demand predictor
by taking into account the time overhead for power on/off the nodes. We leave the
evaluation of this approach as a future work.

8 Conclusion

This article presents an adaptive power management system for a Web server cluster
running on a real system. The cluster is composed by state-of-the art high density and
power efficient architecture nodes, the AMD SeaMicro SM15k.
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Fig. 18 Cluster power variation along 5 h of benchmark execution for each server. Observe that the last
three servers are always idle

Our system is based on the Slack Recovery heuristic, which relies on the theoretical
concept of VPSs, and was previously evaluated on a simulation environment. In order
to bring it to a production cluster, we needed to show how VPSs could be implemented
on practice. We did so by presenting new techniques to predict future demanded
performance and a UCA. Our experimental evaluation showed that the UCA was
capable of maintaining the cluster at the desired utilization rates.

Our power management system was compared to policies usually deployed in
SeaMicro production systems: Linux performance governors and Linux ondemand
governors. The experiments were conducted using Olio, a Web 2.0 Web-based social
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calendar extracted from the CloudSuite Web server benchmark [14]. We showed that
our Slack Recovery-based system could save up to 16 % of the power consumed in
the cluster when compared with the Linux performance governor, and up to 6.67 %
when compared with Linux ondemand governor. Finally, we evaluated the potential for
power savings that could be brought by powering on/off cluster nodes, an alternative
that may be promising. However, we decided not to include in this version of our
system due to the penalty of turning on/off SM15k nodes. We plan to include this
feature when evaluating our power management system in future works.
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