
Efficiency and Scalability of
Multi-Lane Capsule Networks (MLCN)

Vanderson M. do Rosario
Institute of Computing

Unicamp

Campinas, Brasil

vanderson.rosario@ic.unicamp.br

Mauricio Breternitz Jr.
ISTAR-IUL

Lisbon University Institute ISCTE-IUL

Lisbon, Portugal

mbjrz@iscte-iul.pt

Edson Borin
Institute of Computing

Unicamp

Campinas, Brasil

edson@ic.unicamp.br

Abstract—Some Deep Neural Networks (DNN) have what we
call lanes, or they can be reorganized as such. Lanes are paths
in the network which are data-independent and typically learn
different features or add resilience to the network. Given their
data-independence, lanes are amenable for parallel processing.
The Multi-lane CapsNet (MLCN) is a proposed reorganization
of the Capsule Network which is shown to achieve better accuracy
while bringing highly-parallel lanes. However, the efficiency and
scalability of MLCN had not been systematically examined.
In this work, we study the MLCN network with multiple
GPUs finding that it is 2x more efficient than the original
CapsNet when using model-parallelism. Further, we present the
load balancing problem of distributing heterogeneous lanes in
homogeneous or heterogeneous accelerators and show that a
simple greedy heuristic can be almost 50% faster than a naı̈ve
random approach.

Index Terms—deep learning capsule network multi-lane

I. INTRODUCTION

Several approaches to the distributed model parallelization

of Deep Neural Networks (DNN) have concentrated in their

depth [1]–[3], but DNNs can also be organized in a way

to be parallelized in their width [4]. The DNN architecture

may be organized into distinct neural network lanes [5].

This creates separable and resource efficient data-independent

paths in the network that can be used to learn different

features or add resilience to the network. Examples of neu-

ral networks with lanes are the Google Inception [6], [7]

and the Multi-lane Capsule Network (MLCN) [5]. As these

lanes are data-independent they can be (1) processed in

parallel and (2) specialized for distinct computational tar-

gets (CPUs, GPU, FPGAs, and cloud), as well as resource-

constrained mobile and IoT targets, leading to opportunities

and challenges. Recently, our research focus was on Multi-

Lane Capsule Networks (MLCN), which are a separable and

This work was supported in part by CAPES/Brasil (Finance Code 001),
by CNPq (313012/2017-2), and by Fapesp (CCES 2013/08293-7). We would
like to thank Google Cloud Platform for a grant to run our experiments.

V. M. do Rosario, is a Ph.D. Candidate at Institute of Computing, Unicamp,
Brazil. (e-mail: vanderson.rosario@ic.unicamp.br).

E. Borin, is an Associate Professor at Institute of Computing, Unicamp,
Brazil. (e-mail: edson@ic.unicamp.br).

M. Breternitz, Jr., is an Invited Associate Professor and Principal Inves-
tigator at Lisbon University Institute ISCTE-IUL and ISTAR-IUL, Portugal.
(e-mail: mbjrz@iscte-iul.pt).

resource efficient organization of Capsule Networks (CapsNet)

that allows parallel processing while achieving high accuracy

at a reduced cost. Table I shows results from MLCN in

comparison with the baseline CapsNet. With a similar number

of parameters, MLCN achieves similar accuracy but with a

significant speedup stemming from the lane organization. Ini-

tial experiments were performed in single GPU environments

but, with highly-parallel lanes it is interesting to explore

how MLCN scales with more GPUs. Here we present a

first comprehensive study of the scalability and efficiency of

MLCN for multi-GPU systems.

TABLE I: Comparison between Baseline CapsNet and MLCN.

Network/set
# of
lanes

lane’s
Width

Params.
Train Time
(sec./epoch)

Accuracy

Cifar10:
Baseline - - 11k 240 66.36%
Mlcn2 4 4 5k 53 69.05%
Mlcn2 32 2 14k 204 75.18%

Fashion-MNIST:
Baseline - - 8k 220 91.30%
Mlcn2 2 4 3.6k 20 91.01%
Mlcn2 8 4 10.6k 92 92.63%

Moreover, the lanes do not necessarily need to have the

same sizes or shapes and may perhaps even learn different

features of the given task. This implies that each distinct

lane may be better suitable for a distinct HW substrate.

Further, each lane may tolerate different impacts from various

optimizations (such as quantization). Thus, given a set of

lanes, L, and a set of hardware (HW), H , there is an optimal

pair (l, h) for l ∈ L and h ∈ H and an optimal sequence of

lane optimizations for each pair (l, d) of lane and HW.

In this work, we describe and present this lane-hardware

matching problem for homogeneous or heterogeneous accel-

erator scenarios. We also show that a simple greedy heuristic

can be almost 50% faster than a random naı̈ve approach.

The main contributions of this work are:

• We present a first comprehensive analysis of the effi-

ciency and scalability of MLCN showing its advantages

152

2019 31st International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)

978-1-7281-4194-7/19/$31.00 ©2019 IEEE
DOI 10.1109/SBAC-PAD.2019.00034

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on May 06,2020 at 12:07:30 UTC from IEEE Xplore.  Restrictions apply. 



over the data-parallelism-limited approach of the original

CapsNet.

• We define the load balancing problem of distributing

heterogeneous lanes in heterogeneous hardware.

• We present a greedy heuristic to solve the lane-hardware

match problem showing that it is superior to a naı̈ve

approach.

This paper is organized as follows: Section II presents

the state-of-art in Capsule Networks and DNN paralleliza-

tion; Section III describes the Multi-Lane Capsule Network

(MLCN) and discusses how it can be parallelized; Section IV

further discusses the heterogeneous distribution problem and

presents a heuristic approach to it; finally, Section V and VI

shows the experimental setup and the experimental results, and

Section VII presents our conclusions.

II. RELATED WORK

A. Capsule Network

The Convolutional Neural Network (CNN) is a class of

DNN which is commonly used when working with images.

CNNs have already achieved state of art results in tasks such as

image and video recognition, image classification and medical

image analysis. However, these networks have difficulties

with location invariance and loss of location information,

e.g., one CNN which is able to recognize faces could also

mistakenly recognize an image with eyes, mouth, and nose

at random positions as a face, not understanding that there

is an important spatial relationship between the composing

elements. To address this problem, many different new DNN

approaches were proposed, including the notion of capsules

proposed by Hiton, Krizhevsky, and Wang in 2011 [8].

To encode spatial relationship, Capsule Networks also

known as CapsNets, do not work/represent neurons as simple

scalars (as in regular CNNs), but as vectors. Later in 2017

an efficient and realistic training algorithm for such networks

was proposed [9]. The algorithm, named Dynamic Routing,

dynamically chooses activation paths between capsules from

one layer to another, calculating the vectors from the next layer

based on a mean from dynamically selected vectors from all

previous layers.

CapsNet [9] produces a set of N Primary Capsules (PCs)

by applying two convolutional steps to the original image and

splitting it in vectors. Each of these PCs (vectors), identified

as ui, is multiplied by a weight matrix Wi and finally, a

final set of capsules, the digit capsules, is created using the

dynamic routing algorithm. Each of these digit capsule vectors

represents one of the classes in the classification problem and

the vector’s length encodes the probability of the class. The

digit capsule can also be used to reconstruct the image like an

auto-encoder.

This network with the Dynamic Routing algorithm was

shown to have some advantages such as a smaller neces-

sary training set and location invariance. It also has some

drawbacks such as slower execution and lower accuracy than

CNNs. Since the initial publication, however, multiple im-

provements were proposed and the concept has been evolving.

Shahroudnejad, Mohammadi, and Plataniotis [10] presented an

analysis of the explainability of CapsNet, showing that it has

properties to help understand and explain its behavior. Jaiswal

et al. [11] used the CapsNet in a Generative Adversarial

Network (GAN) and showed that it can achieve lower error

rates than the simple CNN. Ren and Lu [12] showed that

CapsNet can be used for text classification and showed how

to adapt the compositional coding mechanism to the CapsNet

architecture. Jimenez-Sanchez, Albarqouni, and Mateus [13]

tested CapsNet for Medical Imaging Data Challenges showing

that it can achieve good performance even when having

less trainable parameters than the tested counterpart CNNs.

Mobiny and Nguyen [14] tested the performance of CapsNet

for lung cancer screening and showed that it could outperform

CNNs mainly when the training set was small. A similar result

was achieved by Kim et al. in traffic speed prediction [15]

with CapsNet outperforming traditional CNNs approaches.

Mukhometzianov and Carrillo [16] used CapsNet with mul-

tiple image datasets and found that, although achieving good

results, CapsNet still requires higher training times compared

to other CNNs. Canqun et al. [17] proposed the Multi-Scale

CapsNet (MS-CapsNet). They introduced a fixed division of

the CapsNet network limited to three “lanes” (they did neither

name or explore the division concept), each with a different

number of convolutions. Also, recently developed, the Path

Capsule Networks by Amer and Maul [18] (Path-Capsnet)

explore the parallelism of CapsNets by splitting the network

such that each path or lane is responsible for computing each

digitcaps or a primary capsule entirely, unlike the computation

of different dimensions/features in MLCN.

III. MULTI-LANE CAPSNETS (MLCN)

In 2019, we introduced a novel organization for the Cap-

sNet named Multi-Lane CapsNet (MLCN) with improved

explainabily, performance and parallelization without decreas-

ing accuracy or generalization power [5]. However, beyond

just encoding the probability of a class, each vector also

contains information to reconstruct the original image, with

distinct dimensions of the vector representing different features

of the image. With this in mind, we propose to split the

original CapsNet architecture1 (Figure 1), dividing the PCs

into independent sets called lanes. Each of these sets of PCs,

a lane, is responsible for one of the dimensions in the final

digit capsules.

The number of PCs per lane may vary, as well as the

way they are computed. In the original CapsNet, two 2D

convolutions are applied to the input image and then reshaped

to produce the PCs. More convolutions may be applied, what

we call the depth of a lane, or more filters can be used per

convolution generating more capsules, what we call the width

of a lane. Further, distinct dimensions of a final digit capsule

can be generated by lanes with different configurations (and

thus distinct computational requirements).

1source code in https://github.com/vandersonmr/lanes-capsnet

153

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on May 06,2020 at 12:07:30 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1: MLCN architecture.

There are two key advantages of this organization over the

original CapsNet architecture. First, it allows parallelism of

the execution, as each set of PCs is constructed independently,

improving performance and allowing training and deployment

on distributed environments. Second, it improves the explain-

ability of the network by associating different features of the

image to each lane.

A. CapsNet Parallelization

A DNN can be paralyzed in different ways and normally

finding the best way for a given network is a complex and

hard task. The three most common are data parallelism, model

parallelism and pipelining.

The first, data parallelism, splits the data which is going to

be computed. Basically, it divides the input batch into smaller

batches for each computer unit and synchronizes it at the end

of the batch. Although being very simple and straightforward,

it can only scale increasing the batch size as dividing too much

a small batch can result in small computation and frequent

synchronization. And varying the batch size impacts in the

accuracy, what can mean a trade-off between accuracy and

speedup.

Another possibility is by splitting the network operations

itself. However, it is not always trivial to find a good place

to split the operations. Normally, if two operations which

are data-dependent are split into two computation units, it

will involve lots of communication. Moreover, implementing

this kind of network division and communication in current

frameworks is not trivial.

Lastly, but not less important, pipelining split the network

into levels which can compute different data at the same time

in a pipeline approach. It is normally the approach used in

high-performance scenarios.

These are not the only techniques to distribute the training

and inference of DNNs and they are not mutually exclusive

and can be used together [4]. Related to MLCN, we tested its

capability of allowing easy model parallelism and compare it

to the common approach that is data parallelism. Of course,

for huge MLCN networks pipeline could also be used, but

we focus on showing how being able to facilitate the use

of model parallelism can bring many advantages mainly over

when only using data parallelism. This same advantage can

be easily extended by adding pipelining per lane, but it will

remains for future work.

IV. HETEROGENEOUS DISTRIBUTION PROBLEM

One of the main advantages of having data-independent

lanes is that these lanes can be deployed separately in multi-

ple accelerators. If we have multiple equal lanes and multiple

equal accelerators, deployment is as basic as dividing the

lanes equally over the HW resources, only being concerned

with the communication cost involved. If in other cases we

have lanes with different shapes, characteristics and compu-

tational intensity or/and we have multiple accelerators with

different characteristics or computational power, deployment

becomes more involved. First, because it now involves load

balancing the computational intensity of the lanes and the

computational power of the lane and, second, because now

there is also the chance to apply different optimizations for

different pairs of HW and lane. This scenario can be seen in

Figure 2, which shows how multiple lanes can be deployed

for different accelerators with different compilation stacks.

Deciding where to execute each lane or what optimizations

to apply to each lane/hardware pair is not trivial. In this work,

we present an approach to address the first problem using a

deployment heuristic. We will address the second problem in

future work.

A. Heuristic Execution Cost for MLCN Lanes

Finding, statically, the optimal solution to deploy a lane

given a set of HW resources is a complex task. For example,

aspects such as the version of the compiler being used or

what other lanes (and their characteristics) are being executed

concurrently on the same HW can have a significant impact

on the final performance. These are only two of the many

aspects that can affect performance. However, we observed in

our experiments that, at least for MLCN, we do not need to

have the exact final performance to make a good deployment

decision. Our experiments have shown that simple predictors

can provide fair results.

We experiment running and taking the average execution

time of 10 executions of MLCN lanes with different width,

size, and types, using three different NVIDIA GPUs (K80,

P100, and V100). For the same number of parameters, inde-

pendently of the GPU used, the performance displays a well-

behaved pattern. It varies linearly when increasing the depth,

quadratically when varying the width, and it was multiplied

by a factor when changing the GPU.

Thus, for MLCN lanes with NVIDIA GPUs and compilers,

predicting the performance on a given HW substrate can be

approximated by Equation 1, which achieves a 0.901 Pearson

correlation with our experimental data.

lanecost = (lanewidth)
2
× lanedepth ×GPUspeed (1)

154

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on May 06,2020 at 12:07:30 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 2: Multiple Neural Network lanes can be trained in parallel using multiple HW even in heterogeneous scenarios..

The GPUSpeed in equation 1 is the speed factor of the GPU

being used. It only has any significance when deploying to a

heterogeneous set of GPUs and the GPUSpeed constant for

each GPU can be inferred by simply measuring the execution

time of a tiny lane in each GPU and normalizing it. This can

be done before the execution and it has an insignificant cost

in the final execution time. In the case of our experiments, we

collect the GPUSpeed by executing a 512x512 fully connected

network with a small set of data. Normalized by K80, we used

the following GPUSpeeds for M40, P100 and V100: 3.1, 4.2

and 6.

B. Load Balancing Algorithm

We showed that we can make good execution cost predic-

tions for NVIDIA GPUs and MLCN lanes. However, there is

still the problem of how to deploy a set of lanes with different

sizes and widths to a set of GPUs with different speeds. We

can model this problem as a numerical set partition with N

bins, each bin corresponding to a target GPU. The cost of

each lane being deployed (inserted into the bin) is equal to

the lane cost (Equation 1) multiplied by previous execution

speed prediction on host HW via execution of a tiny lane

(GPUSpeed).
The numerical set partition problem is NP-Hard, but very

good results can be achieved using heuristic/approximative

algorithms and it can even be solved in pseudo-polynomial

time using dynamic programming making it one of “The

Easiest Hard Problem” [19], [20]. One of such heuristics that

achieved good results and is very simple to implement is the

greedy partition which always inserts the remaining lane with

the largest cost in the emptiest bin. Algorithm 1 shows this

greedy algorithm including the pre-execution used to calculate

the GPUSpeed.

V. EXPERIMENTAL SETUP

In our experiments, we used machines from Google Cloud.

All virtual machines instantiated had 24 vCPUs with 50GB of

RAM and a default network interface. We used different GPU

setups, including NVIDIA Tesla M40, K80, P100 and V100

all with CUDA 10.0, Intel MKL-DNN and Tensorflow 1.13.1.

Algorithm 1 Greedy Parition Algorithm

i f u s i n g h e t e r o g e n e o u s HW:
f o r each HW:

e x e c u t e a t i n y l a n e
GPUSpeed [ i ] = r u n t i m e of t h e t i n y l a n e
GPUSpeed [ i ] = GPUSpeed [ i ] / s m a l l e s t ( GPUSpeed )

def G r e e d y P a r t i t i o n ( l a n e s , NumGPUs , GPUSpeed ) :
GPUTasks = [ [ ] f o r i in range (NumGPUs ) ]
f o r l a n e in r e v e r s e s o r t e d l a n e s :

s o r t GPUTasks by GPUTasks [ i ] [ j ] * GPUSpeed [ i ]
GPUTasks [ 0 ] . append ( l a n e )

re turn GPUTasks

The results and experiments that we explore did not show

sensitivity to the input data set (tested with MNIST, CIFAR10,

and others) and we chose to use the MNIST data set. Execution

time was measured by executing 10 MNIST epochs, excluding

the first, and using the average time for the others. All results

had a very small variation. The execution time between epochs

had always a very similar value. Thus, for simplicity, we

present averages.

Thus, in this work we tested four configurations for the

CapsNet parallelization, as follow:

• Original with Data Parallelism (baseline or base): we

simply used the original concept of CapsNet for the

MNIST dataset parallelized using Keras data parallelism

support.

• MLCN with Data Parallelism (mlcn-data): we used the

same approach as in the baseline (Keras data parallelism),

but with the MLCN organization.

• MLCN with Model Parallelism (mlcn-model): we paral-

lelize the execution by executing each lane on different

GPUs. When using multiple machines, we used Horovod

MPI framework to do handle the communication.

155

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on May 06,2020 at 12:07:30 UTC from IEEE Xplore.  Restrictions apply. 



VI. EXPERIMENTAL RESULTS

A. MLCN Scalability

To understand how each approach to the parallelization of

CapsNet scales, we studied their performance with 1, 2, 4 and

8 NVIDIA Tesla K80 GPUs.

The graph in Figure 3 shows the performance compari-

son between the base (baseline), mlcn-data and mlcn-model.

MLCN is faster than the baseline even in a single GPU,

as reported earlier. However, it is interesting to notice that

the advantage does not increase when scaling to more GPUs

with data parallelization, as the speedup difference between

mlcn-data and baseline remained constant. This suggests that

the reorganization proposed by MLCN does not improve

scaling via data parallelism. However, the same is not true

for model-parallelism. In this case Mlcn-model has a visible

advantage, scaling with higher efficiency and achieving a near

7.18 speedup with 8 GPUs over the single GPU baseline.

Thus, MLCN not only is faster than the original CapsNet

(baseline) but, because it allows model-parallelism, it scales

more efficiently.

2

4

6

8

2 4 6 8

GPUs

S
p
e
e
d
u
p

Model

base
mlcn−data
mlcn−model

Fig. 3: speedup of the three parallelization approaches: base-

line with data parallelism (base), MLCN with data parallelism

(mlcn-data) and MLCN with model parallelism (mlcn-model).

All speedup are relative to the baseline with one GPU.

B. Impact of Batch Size

The size of the minibatch, or batch size, has a significant

impact on the performance of a DNN as more computation/-

communication is available, enabling a more efficient use of

the HW. The batch size has a significant impact on data

parallelism performance as more data/computation is available

to be divided among the GPUs. To study the advantage

of MLCN over the data parallelism method we tested both

approaches with 100, 150, 300 and 600 batch sizes. The graphs

in Figures 4a and 4b show the speedup versus a single GPU

with a 100-sized batch size. In both cases we observe similar

efficiency as batch size grows. So, for different batch sizes

the relative advantage of MLCN with model parallelism stays

the same, as increasing the batch size equally increases the

efficiency of data and model parallelism approaches.

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●
●●●

●●2

4

6

8

2 4 6 8
GPUs

S
pe

ed
up

Batch Size
●

●

●

●

100
150
300
600

(a) Baseline using data-parallelism for different mini batch sizes

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●
●

●2

4

6

8

2 4 6 8
GPUs

S
pe

ed
up

Batch Size
●

●

●

●

100
150
300
600

(b) MLCN using model-parallelism for different mini batch sizes

Fig. 4: MLCN and baseline scalability for 1, 2, 4 and 8

NVIDIA K80 GPUs using Google Cloud VM with 24 vCPUs

and 90GB of RAM.

We also studied the impact of batch size on both baseline

and MLCN accuracy, shown in Figure 5. Increasing batch sizes

have a significant impact on the accuracy in both cases. The

magnitude of this impact is related to the dataset as shown by

156

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on May 06,2020 at 12:07:30 UTC from IEEE Xplore.  Restrictions apply. 



the differences between MNIST and Cifar10 results. Thus, as

model parallelism has better performance and scalability with

smaller batch sizes (Figures 4a and 4b), model parallelism has

the advantage of scaling without the need to trade accuracy

for efficiency.

●●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

0.25

0.50

0.75

200 400 600
Batch Size

A
cc

ur
ac

y

Dataset

Cifar10
MNIST

Model
●

●

base
MLCN

Fig. 5: validation accuracy impact when increasing the training

batch size for the baseline and MLCN in the Cifar10 and

MNIST datasets.

C. Impact of Lanes Characteristics

The previous results explored the suitability of MLCN

and its model parallelization. We also explore also how the

characteristics of the MLCN lanes can affect performance

and scalability by varying the three main hyperparameters in

MLCN lanes: their width, depth and the quantity. The results

are shown, respectively, in Figures 6a, 6b and 6c.

The width and depth of lanes has a direct impact on the

number of parameters per lane and, consequently, the amount

of computation per lane. With more computation per lane, the

efficient use of multiple GPUs becomes advantageous. This is

shown in Figures 6a and 6b as larger lanes increase efficiency.

However, increasing the width had a much more significant

increase in efficiency, at similar increase in number of param-

eters. This indicates that, besides the number of parameters,

the type of computation affects performance. In the case of

MLCN lanes wider lanes result in better performance than

deeper lanes with the same number of parameters.

Another interesting point was the fact that increasing the

number of lanes did not significantly increase performance,

as shown in Figure 6c. Even though increasing the number

of lanes also increases the amount of computation available

between batches, there is an overhead of having these com-

putations separable. So, having several lanes in one GPU is

less efficient than having a single extremely large lane.

2

4

6

8

2 4 6 8

GPUs

S
p
e
e
d
u
p

Lane Width

1
2
3
4

Model

mlcn−data
mlcn−model

(a) MLCN using model-parallelism with mini batch width of 150
and varying the width of the lanes.

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

2

4

6

8

2 4 6 8
GPUs

S
pe

ed
up

Model

mlcn−data
mlcn−model

Lane Depth
●

●

●

●

1
2
3
4

(b) MLCN using model-parallelism with mini batch width of
150 and varying the size of the lanes.

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

2

4

6

8

2 4 6 8
GPUs

S
pe

ed
up

Model

mlcn−data
mlcn−model

Lanes
●

●

●

●

8
16
24
32

(c) MLCN using model-parallelism with batch size of 150 and
varying the number of lanes.

Fig. 6: scalability variance with different lanes configurations.

157

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on May 06,2020 at 12:07:30 UTC from IEEE Xplore.  Restrictions apply. 



D. Heterogeneous Lanes and GPUs

One interesting observation about MLCN is that having

lanes with different characteristics, such as lanes with differ-

ent sizes and depths, increases the generality of the network.

A similar result was reported by Canqun et al. [17] with the

MS-CapsNet organization. However, as discussed in Section

IV, deploying lanes in multiple GPUs when the lanes have

different computational footprint can be challenging. To study

a proposed heuristic to deploy lanes with different widths

and depths, we tested 4 MLCN networks with 6, 9, 12 and 24

lanes. Each lane may have pairs of depth and width values

ranging from 1 to 5. As shown in Figure 7, we obtain a smaller

execution time with our heuristic than when naı̈vely randomly

distributing the lanes between the GPUs. The advantage

increases with the number of lanes, showing that, the larger

the number of lanes the harder it is to randomly find a good

distribution. Notice that the time accounted for the greedy

heuristic includes the (almost insignificant) time to run the

heuristic.

0

50

100

150

200

250

6 9 12 24
Number of Lanes

T
im

e 
(s

)

Algorithm

Greedy
Random

Fig. 7: average execution time (executed 10 times) of hetero-

geneous lanes running on four K80 NVIDIA GPUs with a

random and a greedy partition of lanes execution distribution.

All lanes varying on width and depth.

E. Heterogeneous Lanes with Heterogeneous GPU

More than having heterogeneous lanes we also tested

a scenario with heterogeneous accelerators. Rather than 4

NVIDIA Tesla K80, we deployed four systems each with a

different GPU: one M40, one K80, one P100, and one V100.

The results are in Figure 8. For total execution time, there

was a significant increase because of network communica-

tion between the systems. Moreover, the difference between

random deployment and our greedy heuristic becomes larger,

showing that for more complex the scenarios with many lanes

or heterogeneous HW, it is key to deploy the computation

carefully.

0

50

100

150

200

6 9 12 24
Number of Lanes

T
im

e 
(s

)

Algorithm

Greedy
Random

Fig. 8: average execution time (executed 10 times) of hetero-

geneous lanes running on one K80, one P100, one V100, and

one M40 NVIDIA GPU in multiple machines communicating

using MPI with a random and a greedy partition of lanes

execution distribution. All lanes varying on width and depth.

VII. CONCLUSION

The Multi-lane CapsNet (MLCN) is a novel organization

for the CapsNet network which is shown to achieve better

accuracy with more efficient HW utilization. Further, MLCN

allows model parallelization by running the lanes in parallel.

In this work, we analyze and measure the advantages of this

new parallelization scheme of the CapsNet when compared to

the usual data parallelism.

We find that MLCN is faster than the original CapsNet and

it scales better with model parallelism being almost 2x more

efficient, even with small batch sizes. We also explored the

impact of different lane configurations on performance and

scalability, showing that wider lanes usually achieve higher

HW efficiency.

Finally, we found that when parallelizing MLCN with lanes

with different characteristics (or when deploying in machines

with different accelerators), load balance is a key factor to

reaching good performance. We proposed a greedy algorithm

to deploy lanes in these scenarios and we found that it can be

up to 50% more efficient than the naı̈ve random deployment.

REFERENCES

[1] Y. Huang, Y. Cheng, D. Chen, H. Lee, J. Ngiam, Q. V. Le, and
Z. Chen, “Gpipe: Efficient training of giant neural networks using
pipeline parallelism,” arXiv preprint arXiv:1811.06965, 2018.

[2] R. Mehta, Y. Huang, M. Cheng, S. Bagga, N. Mathur, J. Li, J. Draper,
and S. Nazarian, “High performance training of deep neural networks
using pipelined hardware acceleration and distributed memory,” in 2018

19th International Symposium on Quality Electronic Design (ISQED).
IEEE, 2018, pp. 383–388.

[3] T. Ben-Nun and T. Hoefler, “Demystifying parallel and distributed
deep learning: An in-depth concurrency analysis,” arXiv preprint

arXiv:1802.09941, 2018.

158

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on May 06,2020 at 12:07:30 UTC from IEEE Xplore.  Restrictions apply. 



[4] Z. Jia, M. Zaharia, and A. Aiken, “Beyond data and model parallelism
for deep neural networks,” arXiv preprint arXiv:1807.05358, 2018.

[5] V. M. do Rosario ; Edson Borin ; Mauricio Breternitz, “The multi-lane
capsule network,” IEEE Signal processing letters, vol. 26, pp. 1006–
1010, 2019.

[6] F. Chollet, “Xception: Deep learning with depthwise separable convolu-
tions,” in Proceedings of the IEEE conference on computer vision and

pattern recognition, 2017, pp. 1251–1258.
[7] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,

inception-resnet and the impact of residual connections on learning,” in
Thirty-First AAAI Conference on Artificial Intelligence, 2017.

[8] G. E. Hinton, A. Krizhevsky, and S. D. Wang, “Transforming auto-
encoders,” in International Conference on Artificial Neural Networks.
Springer, 2011, pp. 44–51.

[9] S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic routing between
capsules,” in Advances in neural information processing systems, 2017,
pp. 3856–3866.

[10] A. Shahroudnejad, A. Mohammadi, and K. N. Plataniotis, “Improved
explainability of capsule networks: Relevance path by agreement,” arXiv

preprint arXiv:1802.10204, 2018.
[11] A. Jaiswal, W. AbdAlmageed, Y. Wu, and P. Natarajan, “Capsulegan:

Generative adversarial capsule network,” in European Conference on

Computer Vision. Springer, 2018, pp. 526–535.
[12] H. Ren and H. Lu, “Compositional coding capsule network with k-means

routing for text classification,” arXiv preprint arXiv:1810.09177, 2018.
[13] A. Jiménez-Sánchez, S. Albarqouni, and D. Mateus, “Capsule networks

against medical imaging data challenges,” in Intravascular Imaging and

Computer Assisted Stenting and Large-Scale Annotation of Biomedical

Data and Expert Label Synthesis. Springer, 2018, pp. 150–160.
[14] A. Mobiny and H. Van Nguyen, “Fast capsnet for lung cancer screening,”

arXiv preprint arXiv:1806.07416, 2018.
[15] Y. Kim, P. Wang, Y. Zhu, and L. Mihaylova, “A capsule network for

traffic speed prediction in complex road networks,” in 2018 Sensor Data

Fusion: Trends, Solutions, Applications (SDF). IEEE, 2018, pp. 1–6.
[16] R. Mukhometzianov and J. Carrillo, “Capsnet comparative performance

evaluation for image classification,” arXiv preprint arXiv:1805.11195,
2018.

[17] C. Xiang, L. Zhang, Y. Tang, W. Zou, and C. Xu, “Ms-capsnet: A novel
multi-scale capsule network,” IEEE Signal Processing Letters, vol. 25,
no. 12, pp. 1850–1854, 2018.

[18] M. Amer and T. Maul, “Path capsule networks,” in preprint, arxiv., 2019.
[19] B. Hayes, “Computing science: The easiest hard problem,” American

Scientist, vol. 90, no. 2, pp. 113–117, 2002.
[20] R. E. Korf, “Multi-way number partitioning,” in Twenty-First Interna-

tional Joint Conference on Artificial Intelligence, 2009.

159

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on May 06,2020 at 12:07:30 UTC from IEEE Xplore.  Restrictions apply. 


