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How Cities Are Getting Smart
Using Artificial Intelligence

Artificial Intelligence

Machine
Learning

Enabling
Tools

- -

How Al is helping cities get smarter TOM VANDER ARK

https://www.forbes.com/sites/tomvanderark/2018/06/26/how-cities-are-getting-smart-using-artificial-intelligence/#239a0e1438
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SMART CITY ARCHITECTURE

Batch Data Sources - External dota feods. Open Data, Cazen Data
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Source: Deloitte Digital, Smart Cities and the Journey to the Cloud, November, 2019



8 ways Al can help save the planet ISTARSIVL
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Priority action areas for addressing Earth challenge areas Image: PwC

https://www.weforum.org/agenda/2018/01/8-ways-ai-can-help-save-the-planet/
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DEFINITION OF MACHINE LEARNING

* Simple Definition: “Algorithms that Learn From Data”

Traditional Programming Machine Learning

Data Data

Output Program
Program Output
In Traditional Programmmg, a Human In Machine Learning, the system autonomously
expe'rt en;odes his knowledge of the learns the relationship of data and the desired
relationship of data and Qeswed output output, creating classification rules (inference) to
as a program to process input data to provide the desired output from similar input

generate the desired output

A Machine Learning: A system capable of the autonomous acquisition and integration of knowledge



DEEP NEURAL NETWORKS

* Biologically-inspired: simulated neurons

multiple neurons is a matrix-vector multiplication.

output

A Simulated Neuron: A biologically inspired
algorithm whereby a number of input values
are provided to a simulated neuron, which
computes an output based on a weighted
combination of the input values

rapidly becoming the preferred algorithm, currently the best solutions for image/speech/natural language processing

Good match for GPU acceleration because the mathematical operation to compute the effects of weighted inputs for

Inputs Outputs

An Example Deep Neural
Network(DNN): A multi-layered
sequence of simulated neurons
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EXAMPLE:
DEEP NEURAL NETWORK CLASSIFYING AN IMAGE

Inputs Outputs

Probability(“bird”)=82%

Image(pixel values)

are input to input

neurons c ] - edtod Final Result: probability
roups or neurons are tralned to detect Of input |mage be|ng a

specific features in image regions.

Subsequent layers reacts to
combinations of features that compose
the image.

given entity
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ML Challenges

Chihuahua or Muffin?

-CNN challenges
-chihuahua, adversarial input
-Network Inspection

-Who does what?
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Capsule Networks

A capsule is a group of neurons that not only capture the
likelihood but also the parameters of the specific feature.

Sabour, Sara, Nicholas Frosst, and Geoffrey E. Hinton. "Dynamic routing between capsules.” Advances in Neural Information Processing Systems.
2017.
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The Multi-Lane Capsule Network (MLCN) ===t
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“The multi-lane capsule network,”

V. M. do Rosario ; Edson Borin ; Mauricio Breternitz,
IEEE Signal processing letters, vol. 26, pp. 1006—-1010, 2019
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Multiple Neural Network lanes can be trained in parallel using multiple HW even in heterogeneous scenarios..
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Original
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Lanel —>

Lane2 —> "1

Lane3 —> '

Synthetic variation on the lanes output.
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MLCN Accuracy

TABLE I. Comparison between Baseline CapsNet and MLCN.

#of lane's Train Time

Network/set lanes  Widih Params. (sec/epoch) Accuracy
Cifar10:

Baseline - - 11k 240 66.36%
Micn2 ) - 5k 53 69.05%
Micn2 32 2 14k 204 75.18%
Fashion-MNIST:

Baseline - - 8k 220 01.30%
Micn2 2 - 3.6k 20 91.01%
Micn2 8 4 10.6k 92 92.63%
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MLCN speedup
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MLCN using model-parallelism with mini batch width of 150
and varying the width of the lanes.



Varying the Number of Lanes
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Next Steps

 Efficient MLCN deployment
 Compiler-based framework

e CapsNet-based loT
e Smart cities/sustainability

 Contact: mbjrz@iscte-iul.pt
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Al Increasing Demand for Computational Power ==

AlexNet to AlphaGo Zero: A 300,000x Increase in Compute
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According to Opendl the demand for compute by deep learning networks has been doubling every 3.5 months since 2012,

Source: https://www.zdnet.com/article/ai-is-changing-the-entire-nature-of-compute/



https://www.zdnet.com/article/ai-is-changing-the-entire-nature-of-compute/

ISTARSIUL

INFORMATION SCIENCES, TECHNOLOGIES
AND ARCHITECTURE RESEARCH CENTER

UNIVERSITY INSTITUTE OF LISBON

SIUL
ISTAR®

INFORMATION SCIENCES, TECHNOLOGIES
AND ARCHITECTURE RESEARCH CENTER

UNIVERSITY INSTITUTE OF LISBON

ISCTE £ IUL

Instituto Universitario de Lisboa



