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Abstract—Machine learning (ML) algorithms have garnered increased interest as they demonstrate improved ability to extract

meaningful trends from large, diverse, and noisy data sets. While research is advancing the state-of-the-art in ML algorithms, it is

difficult to drastically improve the real-world performance of these algorithms. Porting new and existing algorithms from single-node

systems to multi-node clusters, or from architecturally homogeneous systems to heterogeneous systems, is a promising optimization

technique. However, performing optimized ports is challenging for domain experts who may lack experience in distributed and

heterogeneous software development. This work explores how challenges in ML application development on heterogeneous,

distributed systems shaped the development of the HadoopCL2 (HCL2) programming system. ML applications guide this work

because they exhibit features that make application development difficult: large & diverse datasets, complex algorithms, and the need

for domain-specific knowledge. The goal of this work is a general, MapReduce programming system that outperforms existing

programming systems. This work evaluates the performance and portability of HCL2 against five ML applications from the Mahout ML

framework on two hardware platforms. HCL2 demonstrates speedups of greater than 20x relative to Mahout for three computationally

heavy algorithms and maintains minor performance improvements for two I/O bound algorithms.

Index Terms—MapReduce, heterogeneous, distributed, programming model, GPU, auto-scheduling
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1 INTRODUCTION

AS heterogeneous systems become more generally acces-
sible, they continue to be applied to a wider range of

computational problems. Recently, machine learning (ML)
has been added as a domain whose performance can be
improved with the use of heterogeneous systems. However,
ML algorithms are not always as amenable to heteroge-
neous execution as the scientific and graphical applications
that GPUs are commonly used for, and so it can be challeng-
ing for ML domain experts to build performant implemen-
tations of novel algorithms on heterogeneous hardware.

This work guides the development of a novel distributed
and heterogeneous programming system through the port-
ing of two machine learning applications. Through profile-
driven and iterative optimization of the programming
system’s runtime, both application performance and pro-
gramming model flexibility are incrementally improved.
The goal of this work is not to create a ML-specific tool,
but rather to create a high-performance, MapReduce pro-
gramming system whose features and capabilities have
been guided by the requirements of ML algorithms. This
section will introduce the current state-of-the-art in ML

programming systems. We will consider the well-known
distributed programming model, Hadoop MapReduce [1],
and an industry-standard ML library built on it, Mahout [2].

1.1 Hadoop

Hadoop is a distributed MapReduce[3] programming sys-
tem. It improves on other distributed frameworks in many
areas, including programmability and flexibility.

Hadoop MapReduce programming model. Hadoop’s
programmability is derived from its high-level MapReduce
programming model and its simple, object-oriented API.
From a programmer’s perspective, the MapReduce pro-
gramming model divides computation into two stages: map
and reduce. The map stage applies a function to each of
many input key-value pairs (kv-pairs), and outputs zero or
more kv-pairs per input. Then, the reduce stage’s kernel is
applied to all map output values paired with the same key,
reducing that collection of inputs to zero or more output kv-
pairs. In addition to map and reduce, Hadoop also supports
a combine stage that acts as an intermediate reduce and exe-
cutes spatially near each map instance, reducing data move-
ment and memory utilization as a result. The application-
specific logic for each of these stages is implemented as
single-threaded logic in Java classes. The workload for a
Hadoop job can then be transparently mapped to multi-
processor, shared-memory machines by taking advantage
of the parallelism inherent in the MapReduce model.

Hadoop is flexible in terms of the applications that can exe-
cute on it and the data types it supports. This flexibility can
primarily be attributed to its use of the object-oriented JVM.
The ability to represent, serialize, and strongly type-check
user objects is usefulwhen building complex applications.
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1.2 Mahout

Mahout is an open-source collection of ML applications
implemented in sequential Java and Hadoop MapReduce.
Mahout includes clustering, classification, and recommen-
dation frameworks which operate on general-purpose
sparse vectors and hence support application to a variety of
fields. Mahout builds on the flexibility and programmability
of Hadoop when applied specifically to ML applications by
supporting plug-and-play of new algorithms in any of these
frameworks.

Mahout facilitates the porting of complex applications to
distributed systems by domain experts. Because Mahout is
based on the Hadoop MapReduce programming system, it
allows domain experts to implement their applications as
simple, single-threaded Java code but execute them on mas-
sively parallel clusters. By motivating this work with appli-
cations from Mahout and using the Wikipedia data set in
our evaluation, we ensure that the programming system
that results is flexible enough to support real-world applica-
tions and real-world datasets.

2 MOTIVATION

While the benefits of Hadoop and Mahout are clear, their
limitations are more nuanced and generally focused in one
area: performance. To be clear, raw performance is not the
objective of Hadoop and Mahout; they were designed as
highly-programmable frameworks for software develop-
ment. However, as they become more popular and are
applied to domains with tighter QoS requirements, the per-
formance deficits in Hadoop become more of a problem for
users. This section goes into detail on the aspects of Hadoop
and Mahout which cause suboptimal performance.

2.1 Performance Loss in Hadoop and Mahout

Running in the JVM introduces overheads from JVM ini-
tialization, garbage collection, JIT compilation, class load-
ing, I/O abstractions, and many layers of object abstraction.
These problems are exacerbated by Hadoop’s extensive use
of separate, short-lived JVMs for process isolation.

Serialization and deserialization of arbitrary data types is
also a large source of overhead in Hadoop. Key-value pairs
are frequently serialized, even when passing them around
within the same JVM. While this work focuses on improv-
ing computational performance, it is important to also con-
sider I/O optimizations or risk becoming I/O bound.

Hadoop and Mahout largely ignore the problem of mem-
ory management by leaning on JVM garbage collection to
do well enough while statically dividing system memory
between processes. However, it is often the case that either
1) over-utilization leads to garbage collection and/or swap-
ping, or 2) underutilization leaves performance on the table.
In both cases, naive memory management leads to perfor-
mance loss.

2.2 Balancing Programmability and Performance

If the performance of Hadoop and Mahout is to be
improved, it should not come at the cost of the program-
mability of the MapReduce programming model. To pre-
vent this, we studied the requirements of two Mahout
applications and used the insights gained to guide this

work. First, we use the KMeans clustering job as a posi-
tive test case to verify that for embarassingly parallel and
computationally heavy applications we achieve a signifi-
cant performance improvement. Second, we use the Pair-
wise Similarity job (from the Mahout recommender
pipeline) to ensure there are not performance regressions
for applications which are more I/O bound and demon-
strate more complex control flow.

In studying these applications, we identified several fea-
tures that are required for a new programming system to
remain relevant to real-world applications:

1) Efficient execution of computationally diverse ker-
nels and support for arbitrary control flow

2) A high level and familiar programming model and
language

3) Complex data types (sparse vectors, composites, etc.)
4) Accurate resource management techniques which

prevent under- or over-utilization
5) Dynamic memory allocation
6) Support for large, out-of-core data sets
7) Globally accessible readable and writable data

structures
8) Easy-to-use tools that make correctness and perfor-

mance errors easier to diagnose and fix
Section 3 will go into further detail on how each of these

features is supported in HCL2.
This work extends the Hadoop MapReduce program-

ming system to support execution on multiple architectures
in a single job. The end goal of this extension is to improve
the computational performance of MapReduce applications.
This work also modifies Hadoop’s I/O subsystems to pre-
vent accelerated applications from becoming immediately
I/O-bound. Conducting the development of this program-
ming system in parallel with the port of KMeans and Pair-
wise ensures that any changes made for the sake of
performance do not inhibit the generality of the resulting
programming model or its applicability to real-world Map-
Reduce applications.

This paper makes contributions in the following areas:

1) Task management techniques for multi-process, het-
erogeneous systems including automatic scheduling
of computational tasks across a distributed, hetero-
geneous system.

2) Memory management techniques for multi-process,
heterogeneous systems including dynamic, concur-
rent memory allocation and garbage collection in
OpenCL kernels.

3) Compilation techniques for transformation and opti-
mization of heterogeneous kernels.

4) Co-development of the profiling and debugging
tools of a programming framework with the frame-
work itself.

Section 3 covers the API exposed to programmers and
techniques used at runtime to efficiently schedule a distrib-
uted Hadoop MapReduce job on heterogeneous processors.
Section 4 evaluates the effectiveness of this work on five
machine-learning applications from the Mahout framework.
Section 5 discusses related work. Finally, Section 6 draws
conclusions from thiswork and summarizes its contributions.
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3 METHODS

Past work at Rice University [4] developed a prototype dis-
tributed, heterogeneous programming system which accel-
erated Hadoop mappers and reducers using OpenCL. This
work, called HadoopCL, translated JVM bytecode to
OpenCL kernels at runtime and used the Java Native Inter-
face (JNI) to transfer data between the JVM and OpenCL
address spaces and execute OpenCL kernels. HadoopCL
was a first step towards accelerating MapReduce computa-
tion but remained too simple a framework to efficiently
tackle the real-world, irregular, and dynamic ML applica-
tions in Mahout, or the data sets they run on. In particular,
HadoopCL failed to meet criteria 3, 4, 5, 7, and 8 listed in
Section 2.2:

1) HadoopCL only supported primitive key and value
types for inputs and outputs.

2) HadoopCL required that the programmer statically
specify the OpenCL devices to run all mappers and
reducers on.

3) HadoopCL had no support for dynamic memory
allocation, the number of output kv-pairs per input
kv-pair was statically defined so that sufficient mem-
ory could be pre-allocated for all possible outputs.

4) HadoopCL only supported read-only globally shared
data structures.

5) HadoopCL offered no native tools for profiling per-
formance and debugging errors in user code.

The work presented in this paper benefits from the expe-
riences gained implementing HadoopCL. However, the
design, architecture, and implementation of this work all
started from a clean slate. Assumptions made during the
implementation of HadoopCL meant that a major code
refactoring would have been required for the existing
HadoopCL code base to support all of the requirements
listed in Section 2.2. Rather than handicap ourselves from
the start, we chose to discard the existing technical debt and
use the lessons learned to build a more flexible and feature-
ful system.

For the remainder of this paper, the past work will be
referred to as HadoopCL (HCL) and this work as
HadoopCL2 (HCL2).

HCL2 supports a more general class of applications than
HCL while still executing Hadoop mappers and reducers in
native threads on heterogeneous hardware. This section
presents HCL2’s API and software stack (depicted in Fig. 1)
using an illustrative example, starting at the top layer and
working down.

3.1 An Illustrative Example

Calculating p through random sampling is a common
example used to illustrate MapReduce programming mod-
els. By taking random samples inside the unit square on the
xy-axis, p can be estimated using the following equation:

p ¼ 4 �m=ðmþ nÞ;
where m is the number of samples that satisfy x2 þ y2 � 1
and n is the number of samples that do not.

This example can be expressed as a MapReduce compu-
tation. The map stage takes the x and y coordinates of a sin-
gle sample as input. It determines whether that point is
inside the unit circle. If the point is inside the unit circle, it
outputs a kv-pair of (true, 1). Otherwise, it outputs
(false, 1). The reduce stage will only execute twice: once
for the true key and once for the false key. The reduce
stage sums the values for each key, outputting the input key
paired with the accumulated sum of its input values. There-
fore, the final output will be two kv-pairs: (true, m) and
(false, n). From these values, p can be computed.

For the remainder of our methods discussion, the Pi
example will be used to concretely illustrate how a MapRe-
duce application is built in HCL2 and scheduled on a dis-
tributed, heterogeneous system.

3.2 HCL2 API

We start with a description of the HCL2 API presented to
the user. Later sections will discuss the lower layers of the
HCL2 software stack that are responsible for scheduling
programs defined with this API.

The guiding principle of the HCL2 API was to retain as
much similarity to Hadoop MapReduce as possible. As a
result, HCL2 applications are developed entirely in the Java
programming language and compiled into JARs, like
Hadoop applications. Similar to Hadoop, the map, combine,
and reduce stages are each defined by Java classes which
extend type-specific Mapper, Combiner, and Reducer super-
classes. Listed below are exampleHCL2mapper and reducer
implementations of the Pi example introduced in Section 3.1:

public class PiMapper extends

IntPairBooleanLongMapper {

void map(int pid, double valx, double valy) {
double distance_squared =
Math.pow(valx, 2) + Math.pow(valy, 2);

if (distance_squared <= 1) {

write(true, 1);
} else {

write(false, 1);
}
}
}
public class PiReducer extends

BooleanLongBooleanLongReducer {
void reduce(boolean inside,

HadoopCLLongValueIterator values) {

long count = 0;
do {
count += values.get();
} while (values.next());

write(inside, count);
}

}

Fig. 1. The HCL2 software stack.
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The types in each mapper and reducer superclass name
(e.g., IntPairBooleanLongMapper) indicate the input
and output key and value types for that computation. These
superclasses are auto-generated for a range of primitive,
composite, and sparse vector data types. For example,
PiMapper takes a kv-pair of (int, Pair) as input and out-
puts a kv-pair of (boolean, long). The Pair type is an
HCL2-supported composite type containing two double-
precision floating-point values.

HCL2 supports globally shared read-write sparse vectors
within a Hadoop job. Many Mahout applications exhibit a
pattern of 1) initialize global data on task setup, 2) read and
modify global data at each kv-pair, and 3) if global data was
modified then write those modifications to the Hadoop Dis-
tributed Filesystem (HDFS) on task cleanup. Therefore, to
support the target ML applications used to guide this work,
HCL2 exposes a simple API for interacting with global
sparse vectors.

The API for initializing global sparse vectors is straight-
forward. During job initialization, a sparse vector Java
object is passed to HCL2 with flags indicating if it is writ-
able and a unique ID to identify that global vector.

These globals are made accessible to the application code
through the API below. Each global sparse vector is keyed
by its unique integer ID. The dimensions, values, and length
for that sparse vector can be fetched using that ID.

int[] getGlobalIndices(int GID);

double[] getGlobalVals(int GID);

int getGlobalLength(int GID);

Utility functions are also provided for quick lookup, and
for manipulation of elements in the global vectors using
supported mathematical operations (e.g., increment).

These user-initialized global sparse vectors are stored in
HDFS files so that they can be accessed from inside the
Hadoop job. Section 3.5 provides more details on how these
global data structures are managed at runtime and made
accessible to user computation inside a job.

3.3 Hadoop MapReduce

Once application-specific mappers and reducers have been
implemented in Java and compiled to JARs, a Hadoop job
can be created from that Hadoop application and scheduled
on a distributed system using Hadoop MapReduce. The
work described by this paper does not alter the inter-node
MapReduce scheduler provided by Hadoop, but it is briefly
described here for continuity.

A Hadoop job is an instance of a Hadoop application
containing a map, a reduce, and an optional combine stage
that is executed on user-specified input. The map, reduce,
and combine stages of a Hadoop job are split into many par-
allel tasks. Each of these Hadoop tasks iterates over the
input data assigned to it and applies the user-provided map
or reduce function to each input kv-pair.

Hadoop TaskTrackers in each node pull tasks from a cen-
tralized Hadoop JobManager. The JobManager manages the
tasks that make up each job, tracking which tasks are eligi-
ble for execution. Each TaskTracker manages a constant
number of task slots in a node. A single slot generally maps
to a single CPU core. The TaskTracker greedily pulls work
from the JobManager as slots become available. Each task is

executed in a Child JVM running as a separate process. In
this way, Hadoop jobs that have been split into tasks can be
scheduled across a distributed, homogeneous system and
use all available CPU cores.

For our Pi example, the input is a dataset of randomly
generated two-dimensional points. This dataset would be
partitioned, and a single partition assigned to each mapper
task. Each partition would be processed by a different task
running inside a Child process. Once all mappers had com-
pleted, the reduce stage tasks would be scheduled. Because
Pi uses a boolean key for the reduce stage, there are only
two reduce keys. Hadoop MapReduce would likely create
one task for each, though this depends on Hadoop tunables.
These tasks would again be executed by Child JVM pro-
cesses. The final output would be persisted in HDFS.

3.4 HCL2 Device Scheduler

As described in Section 3.3, the Hadoop TaskTracker sched-
ules tasks into task slots at the intra-node level. In general,
each task slot maps to a single CPU core. In HCL2, the Task-
Tracker must also assign each task a device to use.

HCL2 supports three types of HCL2 ”devices”: native
OpenCL threads on GPUs, native OpenCL threads on
CPUs, and execution in the JVM. HCL2 is sufficiently flexi-
ble to support additional OpenCL architectures as they
become available.

While each task only uses a single device, multiple tasks
may be assigned to the same device. Running multiple tasks
simultaneously on the same device keeps device utilization
high even when some tasks are blocked on I/O, at the cost
of potentially increased overhead from context switching
and resource contention. Note that there is no direct rela-
tionship between Hadoop slots and HCL2 devices; the slot
a task is placed in does not affect the device it is assigned.

Deciding which device to assign to a given task is a com-
plex problem. While the performance tradeoffs between
OpenCL CPU and GPU devices are well understood [5], [6],
the tradeoffs between OpenCL and JVM execution are more
interesting. Using the JVM eliminates the need to perform
transfers into a separate address space (as is necessary in
OpenCL). Depending on the characteristics of the data in an
application, using the JVM may also offer memory and I/O
benefits. OpenCL’s batched execution model requires buff-
ering of many input data points. This increases the working
set size of HCL2 tasks and may produce bursty I/O. How-
ever, batching reads in HCL2 also enables optimizations in
the runtime that can hide I/O overhead.

The simplest approach to device selection that HCL2
supports is to use manual, hard-coded programmer hints to
select different devices for different tasks.

HCL2 also has an internal auto-scheduling framework
which, when enabled, constructs a relationship between the
computational load on a HCL2 device and a task’s expected
execution time. By learning from past executions of tasks of
the same type, persisting this information across jobs, and
using low overhead techniques to construct this relation-
ship, the auto-scheduling framework can match or beat the
performance of manual, programmer-defined scheduling.
The following sections will discuss the techniques used by
the auto-scheduler in more detail.
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Measuring and storing past performance. HCL2 stores per-
device historical performance information for every task
type. This historical information is used to characterize task
performance on each device in a platform. A task type cor-
responds to a single mapper, combiner, or reducer class.

For every possible (task-type, device-type) tuple,
the HCL2 auto-scheduler stores a list of past performance
data points. Each element in this list includes two things:
the computational bandwidth achieved by an instance of
this task type in kv-pairs/ms, and an estimate of the aver-
age load on all devices in the system during the execution
of that task.

Computational bandwidth is measured differently for
OpenCL and JVM devices. For both, it is straightforward to
measure the number of kv-pairs processed in each task by
incrementing a counter for each kv-pair read from the input
of a task. To calculate the time taken to process those kv-
pairs on OpenCL CPU and GPU devices, a millisecond-
granularity timestamp is taken at the start and end of every
kernel launch.

Because JVM execution is not batched and each kv-pair is
processed individually, placing timing statements around
every call to a map or reduce function would significantly
add to the overhead of the HCL2 runtime when auto-sched-
uling on JVM devices. Instead, we can only time the overall
task. While this technique induces less overhead than the
technique for OpenCL devices due to fewer timing state-
ments, it also strictly underestimates the computational
bandwidth of the JVM as other operations, such as I/O, are
included in the elapsed time measured.

The estimated average load during a task’s execution is
measured in units of tasks running per device, and is calcu-
lated as the mean of the device load at the start of the task
and at the end of the task.

The computational bandwidth of a task is calculated by
the task itself and communicated to the TaskTracker when
the task completes successfully. The TaskTracker writes
these metrics to a local file immediately so that they can be
reloaded on startup if the TaskTracker is shut down. The
TaskTracker also passes these metrics to the auto-schedul-
ing framework so that task characterizations can be con-
structed or revised.

Task characterization. In the HCL2 auto-scheduler, task
characterizations are created for each task type. Task char-
acterizations use the historical data described in Section 3.4
to predict the performance of instances of that task type on
each device in a platform, and provide a confidence mea-
sure for that performance prediction. Each HCL2 task char-
acterization constructs an internal function:

fðD;LÞ ! R

from device type D and current device load L to expected
execution rate R where R is measured in kv-pairs per
millisecond.

f has a different shape (e.g., linear, exponential, etc.) for
different device types. The function for each device type
was chosen experimentally using performance data from
manually scheduled runs. We plotted the performance of
different devices running KMeans against device load and
looked for trends in the data. Based on the trends we

observed (discussed below), we chose a function shape to
fit to the data for each device.

For JVM and OpenCL CPU devices, we found there was
a clearly linear relationship between device load and task
processing rate. Therefore, we use linear regression to con-
struct a linear function from device load to task processing
rate. Related works [7], [8] have also used linear relation-
ships to predict CPU performance. Generating f has a

computational complexity of OðC2NÞ, where C is the num-
ber of features and N is the number of data points. For
OpenCL CPU devices, we only consider the load on that
device so C is equal to one. For JVM devices, we consider
the load on all devices in the system so C may be greater
than one.

As an example, the function constructed for OpenCL
CPU devices running the Pairwise mapper was fðOpenCL
CPU;LÞ ¼ 26:67� 1:17L. This relationship indicates that
adding more load to an OpenCL CPU device causes the
expected execution rate for all tasks on that device to drop.

For OpenCL GPU devices, there was no clear relation-
ship between device load and task performance. Rather, we
observed two clusters of performance: a small cluster of
slow executions caused by initialization overheads, and a
larger cluster of higher-performing executions. We chose to
use K-nearest neighbors to estimate task performance on
GPUs. This approach predicts task performance using the
mean of the K performance measurements most similar to
the current one in terms of device load. K-nearest neighbors
naturally disregards outliers.

The computational complexity of predicting the perfor-
mance of a given task on a given GPU using K-nearest
neighbors is OðNÞ where N is the number of past perfor-
mance data points. For GPUs, only the load on the GPU in
question is considered as an input when predicting
performance.

Before predicting task performance, a task characteriza-
tion must first report if it has sufficient historical perfor-
mance data on which to base a prediction. In our
implementation, a task characterization is ”confident” it can
make an accurate performance prediction if there are any
similar past executions in its historical performance data. A
past execution is similar if it is for the same device and exe-
cuted at a similar device load. We use an n-dimensional
Euclidean distance measure to determine similarity between
device loads, where n is the number of devices in a platform.
Any device loads within a constant, experimentally-chosen
radius of the current device load are considered similar.

Types of scheduling decisions. There are two types of sched-
uling decisions in HCL2: speculative and performant.

Speculative scheduling decisions are made to fill in gaps
in a task characterization’s knowledge of a particular
device’s performance. A speculative scheduling decision is
made when a task characterization indicates it has no confi-
dence in its performance predictions for a device at the
current device load. By scheduling the current task on the
no-confidence device, a performance data point is added
to that task characterization, allowing it to better predict
performance for future task executions. Having a well-
defined model of each task’s performance on each device
is important in making accurate and well-performing
scheduling decisions.

766 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 3, MARCH 2016

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on May 13,2020 at 15:32:37 UTC from IEEE Xplore.  Restrictions apply. 



While speculative scheduling may lead to suboptimal
task placement, any short-term performance gains that are
lost are outweighed by the long-term benefits of well-char-
acterized performance. As a result, there is generally a
period of suboptimal scheduling and performance during
the early executions of a new task type. Section 4 will char-
acterize this further.

Performant scheduling decisions are made to achieve
maximum performance for a task, given the available HCL2
devices in a platform and the task characterization con-
structed from past executions on those devices.

Auto-scheduler core. The core of the HCL2 auto-scheduler
resides in the TaskTracker and is responsible for:

1) Keeping track of the current device load in a node,
measured in tasks executing per device.

2) Selecting a device for each task based on the current
load in the node and the known task characteriza-
tions (described in Section 3.4).

3) Communicating the selected device to the task.

The current load for all devices is stored in an integer
array, with one entry for each device. The auto-scheduler
increments the load for a device when a new task is assigned
to it. The auto-scheduler also maintains a mapping from exe-
cuting tasks to the device each is running on. When a task
signals the TaskTracker that it completed successfully, the
TaskTracker signals the auto-scheduler to remove that task
from its accounting. The auto-scheduler uses the task-to-
devicemapping to decrement the appropriate device load.

In our implementation, the device for a given task is
selected by first querying the ”confidence” level of its task
characterization for each device in the current platform. If
the task characterization has no confidence for one or more
devices at the current device loads, this task is speculatively
scheduled on a randomly selected no-confidence device.
Otherwise, a performance prediction for each device is
made. The task is assigned the device with the highest pre-
dicted performance.

Once a task has been assigned a device, a device ID is
passed to the Child process running that task as a Java envi-
ronment variable. This environment variable is read by the
HCL2 Runtime (discussed in Section 3.5) and work is only
scheduled on the selected device.

Static scheduler. In addition to the manual programmer-
controlled scheduler and the auto-scheduler, HCL2 sup-
ports a third Device Scheduler: the static scheduler. The
static scheduler uses the task performance profiles gener-
ated by the auto-scheduler to make scheduling decisions,
but does not update those performance profiles. The static
scheduler avoids the computational overheads incurred
when performance profiles are updated with new perfor-
mance data.

3.5 HCL2 Runtime

Once a device has been assigned to a task by the Device
Scheduler, the Hadoop TaskTracker launches a separate
Hadoop Child process. That Child process is responsible for
processing the input assigned to the task using the device
assigned to it. Hadoop uses a separate process for each task
to improve component isolation and system robustness.

Within the Hadoop Child process, the HCL2 Runtime is
responsible for scheduling execution of user-defined com-
putation on the device assigned to this task, as well as han-
dling any necessary communication or management work.

During initialization of the Child process, the HCL2 Run-
time loads the global sparse vectors described in Section 3.2
from HDFS. If this Child is assigned the JVM device, then
no further action is necessary as the globals are now in the
JVM’s address space. If this child is assigned an OpenCL
device, OpenCL buffers are pre-allocated and initialized
with these global values before processing begins.

When using the JVM device, the HCL2 Runtime mirrors
the workflow of a normal Hadoop Child process. It iterates
single-threaded over the input kv-pairs, calls the user-
defined map or reduce function on each, and outputs kv-
pairs one at a time. The work described in this paper does
not significantly change this process.

When running on an OpenCL device, the HCL2 runtime
chunks input and output data points into data buffers. The
HCL2 runtime follows the following steps to process these
data buffers on an OpenCL device:

1) The bytecode loaded for this task’s map() or
reduce()function is translated to an OpenCL ker-
nel. This step will be discussed in more detail in
Section 3.6.

2) A dedicated input I/O thread, called the Input
Aggregator, buffers many kv-pairs from the input
stream for this task in to a data buffer D.

3) Once it is full,D is passed to the Buffer Executor, a sep-
arate thread which allocates memory on the OpenCL
device assigned to this task, transfers the inputs con-
tained in D to the allocated OpenCL memory buffers,
and launches the OpenCL kernel created in step 1.

4) The Buffer Executor detects the completion of proc-
essing for D, transfers its outputs back to the JVM,
and passes them to a dedicated I/O thread, the Out-
put Writer, to be written out.

5) If there are inputs left to process, control loops back
to step 1. Otherwise, this task terminates.

Note that while these steps are described sequentially,
most of the actual processing of a data buffer D is asynchro-
nous and does not require a component (e.g., Input Aggre-
gator) to block on D completing unless the storage or
compute resources required for forward progress by a com-
ponent have been exhausted. Examples of resources that
may cause blocking are OpenCL memory buffers, pre-allo-
cated JVM buffers, or the OpenCL device.

HCL2 runtime memory management. The HCL2 Runtime
explicitly pre-allocates and manages both OpenCL and JVM
memory buffers. This memory management was imple-
mented to limit dynamic allocations on the JVM’s heap and
on OpenCL devices so as to prevent operating system and
JVM out-of-memory errors, as well as limit overhead from
excessive JVM garbage collection. HCL2 has the added com-
plexity of two entities competing for heap allocations within
a single process: the JVM memory manager and the
OpenCL runtime.

There are three types of buffers used in the HCL2 run-
time, each used for a different stage of processing. Each

GROSSMAN ETAL.: HADOOPCL2: MOTIVATING THE DESIGN OFA DISTRIBUTED, HETEROGENEOUS PROGRAMMING SYSTEMWITH... 767

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on May 13,2020 at 15:32:37 UTC from IEEE Xplore.  Restrictions apply. 



buffer type has a fixed number of buffer instances that can
be instantiated at any time. Each buffer instance is either 1)
owned by the component of the HCL2 runtime which is cur-
rently operating on it, 2) stored temporarily in a queue of
pending work, or 3) stored in a pool of free, pre-allocated
buffer instances which are not in active use. The three buffer
types are described in detail below:

1) Input Buffer: An Input Buffer is used to store input
data in the JVM. These buffers are allocated by the
Input Aggregator, filled with input data from
the current task’s input stream, and passed to the
Buffer Executor once full. Input Buffers are
released by the Buffer Executor after their contents
have been transferred from the JVM to an OpenCL
device. Input Buffers encapsulate primitive Java
arrays which store Java objects in a format that
OpenCL can process.

2) Output Buffer: An Output Buffer is used in the
JVM to store data output by an OpenCL kernel.
Like Input Buffers, Output Buffers store Java
objects as primitive arrays. Output Buffers are
allocated by the Buffer Executor and transferred
to directly from the OpenCL device. Once the
OpenCL outputs have been pulled from the
OpenCL address space into an Output Buffer,
the contents of these buffers are written to the
next stage in the MapReduce pipeline and
released by the Buffer Executor.

3) Kernel Buffer: A Kernel Buffer is a JVM object that
consumes minimal JVM memory but is associated
with a set of OpenCL buffers in the OpenCL address
space. Each Kernel Buffer acts as a handle that HCL2
runtime components must acquire to access the asso-
ciated OpenCL buffers. The Buffer Executor allocates
a Kernel Buffer from a pre-allocated pool and trans-
fers the contents of an Input Buffer to the OpenCL
buffers associated with that Kernel Buffer. That same
Kernel Buffer is held by the Buffer Executor for the
lifetime of the OpenCL kernel processing its contents.

These data buffers are also used to circumvent Hadoop
serialization and deserialization overheads. Since objects
are already stored as primitive arrays in Output Buffers, we
output these primitive values directly with no serialization
overhead.

3.5.1 Scheduling Pi on the HCL2 Runtime

When scheduling Pi on the HCL2 Runtime in a single
Hadoop Child process, each data buffer D will be special-
ized to match the input and output types of the Pi mappers
and reducers. For example, consider the Pi mapper, which
takes as input an integer key and a pair of doubles as its
value. When stored in an Input Buffer, these inputs would
be serialized into:

int[] inputKeys;

double[] inputVals1;

double[] inputVals2;

Other than the types stored in data buffers, the HCL2
Runtime workflow described above is identical for all tasks.

3.6 HCL2-APARAPI

TheHCL2 Runtime described in Section 3.5 is responsible for
scheduling OpenCL computation within a single Child pro-
cess. However, Section 3.2 explained that HCL2 exposes a
Java API, and that HCL2 applications are compiled to JVM
bytecode and stored in a JAR. To support executing the map,
reduce, and combine computation defined by this JVM byte-
code in both the JVM and on OpenCL devices, HCL2 must
automatically generate OpenCL kernels from JVMbytecode.

HCL2 uses a modified version of the open-source APAR-
API framework [9] to translate each mapper, combiner, and
reducer’s definition from JVM bytecode into OpenCL ker-
nels. APARAPI is an open source, general-purpose frame-
work that enables transparent execution of Java programs
on OpenCL devices through an API similar to Java’s
Runnable. APARAPI includes a runtime translator from
JVM bytecode to OpenCL kernels and handles all OpenCL
memory allocation, data transfer, and kernel execution for
the programmer. HCL2 uses a modified version of
APARAPI’s bytecode translator, but adds its own HCL2-
specific support for performing all other OpenCL manage-
ment operations. HCL2 extends APARAPI to support
dynamic memory allocation in OpenCL, which is discussed
briefly in Section 3.6.

In HCL2, APARAPI’s bytecode translator is applied to
the bytecode loaded for a mapper, combiner, or reducer
class during initialization of an HCL2 task, generating a
String object containing OpenCL kernel code. This
String is passed from the JVM to native code through JNI
and compiled into an OpenCL program—the generated
OpenCL program can then be executed.

An example of the auto-generated code for the Pi exam-
ple from Section 3.1 is included below:

#pragma OPENCL EXTENSION cl_khr_fp64 : enable

void Pi$PiMapper__map(This *this, int pid,

double valx, double valy) {

double distance_squared = pow(valx, 2.0) +

pow(valy, 2.0);

if (distance_squared <= 1) {

__write(this, 1, 1);

} else {

__write(this, 0, 1);

}

}

Concurrent dynamic memory allocation in OpenCL. HCL2-
APARAPI supports dynamic memory allocation inside
OpenCL kernels. HCL2-APARAPI’s dynamic memory allo-
cator uses a shared heap of OpenCL memory split between
free and allocated partitions by an atomically incremented
pointer. This pointer always points to the lowest unallo-
cated memory and is initialized to the base address of the
shared heap. A thread requests memory by incrementing
the pointer to a higher memory address. If the address
incremented to is below the limit of the heap, then that allo-
cation is successful and the thread is guaranteed exclusive
access to that range of memory.

HCL2’s dynamic memory allocator includes a thread-
local garbage collector that can reclaim temporary alloca-
tions which are not written as final output. These reclaimed
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memory segments can then be re-used to satisfy future allo-
cations from the same thread.

Every allocation has a header storing:

1) The size of the allocation, in bytes.
2) The address of the previous allocation performed by

the current thread. Collectively, these pointers form
a linked list of past allocations performed by each
thread.

3) A flag that is initialized to false but is set to true-

when this allocation is written as output from a
mapper/reducer.

Once processing of a kv-pair completes, all temporary
allocations which were not written as final output can be
identified and reclaimed into a thread-local list of free mem-
ory ranges by traversing the past allocations list and search-
ing for allocations which were not marked as final output.
Future memory allocations by that thread then check this
free list before attempting an allocation on the shared heap.

This technique permits allocations to be performed with-
out an expensive atomic increment on the heap’s free mem-
ory pointer and improves memory efficiency by increasing
the percentage of OpenCL memory used to store non-tem-
porary values.

If memory allocation by a thread fails then that fault is
handled by aborting processing of the current input kv-pair
and marking it incomplete. The completeness of each input
kv-pair is checked by the JVM on kernel completion. Any
outputs written for an incomplete kv-pair before the fault are
not stored as final output in an HCL2 Output Buffer. The
incomplete input element is then marked for retry. Because
the OpenCL buffers associated with a Kernel Buffer are iso-
lated in the OpenCL address space and the Buffer Executor
does not release a Kernel Buffer until processing of all ele-
ments completes, all input kv-pairs that require a retry are
guaranteed to still be on the device. An OpenCL kernel can
immediately be relaunched to retry kv-pairs which faulted.

Dynamic memory allocation is currently exposed to the
programmer as method calls (e.g. int[] allocInt(int)).
In future work, HCL2’s programmability could be improved
by replacing the JVM NEW bytecode instruction during
bytecode-to-kernel translation.

3.7 Native Profiling and Debugging Tools

Both distributed and heterogeneous development make
profiling and debugging more difficult. Combining the two
into a single programming system magnifies the opacity of
system state. This section will briefly cover work supporting
native profiling and debugging tools in HCL2.

HCL2 profiler. At the core of the HCL2 Profiler (HCL2P) is
a runtime logging component that logs timestamps of
important events in both JVM and native execution. For
example, timestamps are written at the start of input aggre-
gation, at each OpenCL kernel launch, and for each event in
the OpenCL profiling API. By correlating JVM and OpenCL
timestamps within a node, fine-grain profiling is achieved.
HCL2 does not currently support correlating these events
across multiple nodes.

Following job completion, the timestamp logs can be
fetched, post-processed, and visualized using a standalone

tool. This produces a visual timeline of input aggregation,
output dumping, kernel processing, thread blocking, and
other important HCL2-specific states.

3.7.1 Data Buffer Debugger

The HCL2 Debugger (HCL2D) uses a similar workflow of
runtime logging and post-processing. HCL2D uses runtime
checkpointing of kernel inputs to enable offline debugging
of the correctness and performance of HCL2 OpenCL
kernels.

On each kernel launch, a snapshot is taken of OpenCL
buffer contents and sizes, kernel source code, and any other
state necessary to fully recreate the same kernel launch. This
snapshot is written to a dump file on disk, ensuring that the
saved state persists even if the process writing it crashes.

The buffers which must be saved are determined based
on directional information (IN, OUT, INOUT) passed down
from higher HCL2 layers. Only the contents of IN and
INOUT buffers are written to the dump file. All buffers have
their dimensionality saved.

Upon successful completion of the associated kernel
launch, the dump file is deleted from disk to prevent out-of-
space errors in storage-constrained systems.

Once Hadoop job execution completes or fails, any dump
files remaining on disk must be associated with kernel
launches that either failed or were in-progress at job termi-
nation. A utility was implemented to parse the generated
dump files and perform an identical re-execution based on
their contents. This offline execution can be inspected using
other debugging tools, from simple prints to gdb.

3.8 Summary

In this section we summarized the HCL2 software stack and
toolset, including:

1) The Java API exposed to programmers for writing
HCL2 mappers, reducers, and combiners.

2) The Hadoop MapReduce framework used to distrib-
ute tasks to multiple nodes.

3) The Device Scheduler used within each node
to assign a device to each task, and the auto-
scheduler it uses to make these scheduling
decisions automatically.

4) The HCL2 Runtime used within each task to sched-
ule work on a single OpenCL device.

5) The modifications made to APARAPI to support
dynamic memory allocation.

6) HCL2’s native debugging and profiling tools.

In the next section, we will evaluate these different com-
ponents for performance and usability.

4 EXPERIMENTAL EVALUATION

While HCL2 was implemented based on analysis of
KMeans and Pairwise Similarity, it is important to validate
that the resulting system also performs well on other appli-
cations and across a range of platforms.

HCL2 performance was evaluated across five bench-
marks from the Mahout framework: KMeans, Pairwise Sim-
ilarity, Fuzzy KMeans, Dirichlet Clustering, and the Naive
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Bayes Trainer. Tests were performed on two different hard-
ware platforms. In Platform A, each node contains a 12-core
2.80 GHz Intel X5660 CPU, two discrete NVIDIA M2050
GPUs each with �2:5 GB of global memory, and 48 GB of
system RAM. All nodes in Platform A are connected by
Infiniband, with a peak bandwidth of 40 Gb/s. For Platform
B, each node contains a single AMD A10-7850K APU which
includes four CPU cores running at 3.7 GHz, a Radeon GPU
with �2 GB of global memory, and �14:5 GB of system
memory. All nodes in Platform B are connected by 1 Gb
Ethernet. Both platforms use Java 1.7.0.

The following sections will go into detail on the perfor-
mance of manually and automatically scheduled HCL2 rela-
tive to the original Mahout implementations of each
benchmark. Code snippets from the HCL2 implementation of
an example application, Fuzzy KMeans, will be used to sub-
jectively evaluate HCL2 programmability. All performance
evaluation is done using a subset of theWikipedia dataset.

4.1 Performance Evaluation

Table 1 lists the overall execution times achieved by both
platforms on all benchmarks for both Mahout and HCL2.
These experiments are performed with one Hadoop Name-
Node and one Hadoop DataNode. Speedups of HCL2 rela-
tive to Mahout on Platforms A/B range from 1.09x/1.49x
for the Naive Bayes Trainer up to 11.88x/21.32x for Fuzzy
KMeans. The device selection for manually scheduled
HCL2 was decided upon by the authors after extensive test-
ing of a variety of configurations, and is listed in Table 2.
Note that Dirichlet does not have a combine or reduce stage.

The intrinsic profiling features of HCL2 can be used to
take a more in-depth look at the performance characteristics
of the Fuzzy KMeans and Bayes benchmarks as a way of
understanding where HCL2 performs well and poorly.
Parsing of the profiling logs described in Section 3.7 pro-
duced the statistics in Table 3 for Fuzzy KMeans and Bayes
running on Platform A. Because HCL2 focuses on accelerat-
ing computation, it makes sense that the performance
improvement from using HCL2 would be larger for com-
pute-bound applications like Fuzzy KMeans than for more
I/O-bound applications like Bayes.

4.2 Scalability

As Hadoop and Mahout are used in extremely parallel dis-
tributed systems containing hundreds or thousands of
nodes, it is important to consider the scalability of HCL2. To
do so, the scalability of each benchmark is evaluated on
both platforms.

Fig. 2 shows the strong scaling of mean execution time on
Platforms A and B. The number of nodes tested on both plat-
formswas limited by resource availability. None of the bench-
marks achieve perfect scalability on either platform or either
programming system to four or eight data nodes. This is due
to I/O overheads from HDFS, increased workload imbalance
as the workload is spread thinner across the system, and lim-
ited parallelism of the reduce stage. Both HCL2 and Mahout
demonstrate similar scaling across applications and nodes as
both are still data-parallelMapReduce programming systems,
and no new bottlenecks are introduced by HCL2 that would
limit scaling.We also continue to see speedup fromHCL2 rel-
ative toMahout at higher node counts.

4.3 Comparison with HadoopCL

HCL2 uses the lessons learned from HadoopCL[4] to build a
more performant, flexible, and featureful programming

TABLE 1
Overall Execution Time and Speedup of Manually Scheduled

HCL2 Jobs Relative to Mahout Using one NameNode
and One DataNode

Benchmark Platform A

Mahout HCL2 Speedup

KMeans 1374211.9 182185.4 7.54x
Fuzzy KMeans 1532909.0 129085.0 11.88x
Dirichlet 818331.7 178464.3 4.59x
Pairwise 186010.7 110931.8 1.68x
Bayes 137143.3 125929.3 1.09x

Platform B

KMeans 3579745.4 565304.3 6.33x
Fuzzy KMeans 4208923.5 197390.0 21.32x
Dirichlet 1388293.1 146072.3 9.50x
Pairwise 353348.2 187261.4 1.89x
Bayes 215068.4 144089.5 1.49x

TABLE 2
Manually Selected Devices for the Map, Combine,

and Reduce Stages of Each Benchmark

Benchmark Map Combine Reduce

KMeans OpenCL-GPU OpenCL-CPU JVM
Fuzzy KMeans OpenCL-GPU OpenCL-CPU JVM
Dirichlet OpenCL-GPU N/A N/A
Pairwise JVM OpenCL-CPU OpenCL-CPU
Bayes JVM OpenCL-CPU OpenCL-CPU

TABLE 3
Percent Execution Time Spent by Platform A in Read I/O,

Kernel Execution, and Write I/O While Executing
Fuzzy KMeans and Bayes

Map Stage Reduce Stage

Read Exec Write Read Exec Write

Fuzzy 5% 94% 1% 23% 65% 12%
Bayes 97% 2% 1% 22% 73% 5%

Fig. 2. Speedups of all benchmarks running on Mahout and HCL2 in
Platform A and B as the number of DataNodes(DN) increase.
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system. Table 4 compares HCL2 and HadoopCL perfor-
mance on the benchmarks used in the original HadoopCL
paper. Note that we cannot compare the performance of the
five benchmarks used in this paper because they can not be
implemented in HadoopCL as HadoopCL does not support
sparse vector types, dynamic memory allocation, or globally
shared writable data structures.

On all benchmarks we observe slight to modest perfor-
mance improvements relative to HadoopCL. Considering
each runtime is different in how it chunks data, schedules
work, and constructs kernels it is difficult to perform a one-
to-one comparison and precisely identify causes for this
performance improvement. HadoopCL also lacks the native
profiler support that HCL2 has. In general, we attribute it to
improved compute-I/O overlap, better device & memory
utilization from the HCL2 runtime, and support for using
JVM execution for tasks where it is beneficial.

4.4 Compilation Overhead

HCL2 uses a modified version of APARAPI’s bytecode-to-
OpenCL runtime translator to convert map, combine, and
reduce classes to OpenCL kernels. Table 5 quantifies the
expense of that runtime compilation by measuring the
amount of execution time devoted to generating and com-
piling kernels in each task. Note that the this time is over-
lapped with other initialization operations in each task.
Because of this overlap it is difficult to calculate how much
compilation contributes to overall execution time. An upper
limit on the percent of overhead can be calculated by divid-
ing the “Time to Translate & Compile” by the “Avg Job
Time” in Table 5, which gives us a maximum of 1.7 percent
of execution time spent translating and compiling kernels in
Fuzzy KMeans.

4.5 Auto-Scheduling

HCL2’s support for auto-scheduling removes the burden of
performance tuning from the programmer while still

finding a well-performing schedule based on task perfor-
mance characteristics and device occupancy.

To evaluate the HCL2 auto-scheduler, 20 jobs of each
benchmark were run consecutively: 10 with auto-schedul-
ing applied only to the map stage followed by 10 with auto-
scheduling applied only to the reduce stage. During mapper
auto-scheduling, reduce tasks were assigned to the same
device as was chosen for manual scheduling. During
reducer auto-scheduling, the HCL2 static scheduler was
used for mapper tasks.

Fig. 3 shows the progression of performance over all
auto-scheduled runs of Fuzzy KMeans and Bayes on Plat-
form A. These benchmarks were chosen as representa-
tions of good and poor auto-scheduling. For Fuzzy
KMeans, the HCL2 auto-scheduler task placement quickly
converges. There is little loss in performance relative to
manually scheduled jobs for most auto-scheduled runs.
Bayes requires more exploration of the task performance
characteristics before the HCL2 scheduler converges. This
is due to poor performance when executing the map stage
of Bayes on GPUs, leading to drastic performance varia-
tion for any Bayes job which speculatively schedules map
tasks on the GPU.

We observe a downwards spike in Fuzzy KMeans execu-
tion time on run eleven, caused by the switch from mapper
auto-scheduling to reducer auto-scheduling. At this point,
no historical performance information is available on Fuzzy
KMeans reducer performance, so speculative scheduling
decisions are made on suboptimal devices.

Note that these graphs show the raw execution time for
individual runs as a way of illustrating the real-world per-
formance progression one could expect from using this
auto-scheduling framework. Random variations in perfor-
mance can be attributed to environmental factors as other
jobs in the same compute cluster use a shared resource (e.g.
the network).

The only benchmark on either platform that fails to
achieve parity with manual scheduling is Pairwise on
Platform B, where only approximately 83 percent of peak
manually-scheduled performance is achieved. This is a
result of scheduling the mapper stage in OpenCL CPU
threads instead of on the JVM. This mis-scheduling is
caused by inaccuracies in the technique used to calculate
task performance on the JVM, described in Section 3.4. This
is only a factor for kernels where an OpenCL device per-
forms similarly to the JVM. The Pairwise Mapper is an

TABLE 4
Speedup of HCL2 Relative to HadoopCL on the Four
Benchmarks Used in the Original HadoopCL Paper,

Taken from the Mean of 10 Runs of Each

Benchmark HadoopCL HCL2 Speedup

Pi 477,680 ms 299,140 ms 1.60x
Blackscholes 762,511 ms 675,547 ms 1.13x
Sort 846,935 ms 572,861 ms 1.48x
2D KMeans 302,544 ms 295,068 ms 1.03x

TABLE 5
Time Used on Average to Translate Bytecode to OpenCL
Kernels and Compile Those Kernels to Executable Objects

Benchmark Time to Translate & Compile Avg Job Time

KMeans 2,132 ms 182,185 ms
Fuzzy 2,242 ms 129,085 ms
Dirichlet 1,049 ms 178,464 ms
Pairwise 2,489 ms 110,932 ms
Bayes 2,034 ms 125,929 ms

This data is taken from 10 manually scheduled runs on Platform A and is aver-
aged across all 10 runs.

Fig. 3. Progression of execution time for auto-scheduled HCL2 Fuzzy
KMeans and Bayes jobs relative to the mean execution time of manually
scheduled HCL2 jobs on Platform A.
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example where the resulting scheduling actually resulted in
a significant performance loss.

Table 6 shows how many auto-scheduled jobs completed
within 10 percent of the execution time of the manually
scheduled jobs, and how well the fastest auto-scheduled job
performed relative to the fastest manually scheduled job.
The main outlier (explained above) is the Pairwise bench-
mark on Platform B.

One item of note in Table 6 is the relative ability of the
auto-scheduler on each platform to reach performance
similar to manual scheduling. Platform B is measurably
better at achieving performance parity than Platform A
on four out of the five benchmarks (Pairwise’s poor per-
formance was explained earlier). The logs of the auto-
scheduling system explain that this is a result of Platform
A having twice as many GPUs as Platform B. Because the
confidence of a task’s performance prediction uses a dis-
tance measure based on system load, this increased
dimensionality in the device load vector leads to an
increased amount of time spent performing speculative
execution on Platform A than Platform B, as a larger
search space must be covered. Hence, more time and
more jobs are spent with tasks being speculatively sched-
uled on suboptimal devices on Platform A.

It is also important to understand the overhead added
when performing auto-scheduling. This overhead comes
from three places: the timing statements used to measure
the elapsed time of device computation, the computation
necessary to revise a task’s performance characterization
based on new performance data, and the computation
needed to make a scheduling decision based on task perfor-
mance profiles. We can measure this overhead by directly
recording the time spent in each job on revising perfor-
mance characterizations and making scheduling decisions
using millisecond-granularity timing statements. Note that
the HCL2 Static Scheduler from Section 3.4 was added as a
way of reducing auto-scheduling overhead by using stored
task characterizations but not updating them.

Table 7 shows the average percentage of total execution
time spent revising performance characterizations, making
performant scheduling decisions, and making speculative
scheduling decisions for all auto-scheduled jobs. Note that
performant scheduling consumes an order of magnitude
more execution time than speculative scheduling. This is a
result of much more performant scheduling being done

than speculative scheduling, as full task performance char-
acterization is often achieved after at most five jobs.

Table 8 shows howmany tasks the auto-scheduler placed
on each device type for the fastest run of each benchmark on
Platforms A and B. In most cases, the scheduling decisions
made by the auto-scheduler are identical to those
made manually by expert tuning. The most common differ-
ence was execution by the auto-scheduler of tasks on the
OpenCL CPU device instead of the JVM. This is likely a
result of the measurement error discussed previously. For
most tasks, this has little impact on performance as they
both execute on the same physical architecture. The auto-
scheduler used the GPU for the Bayes reduce stage on
Platform A, and was able to achieve a 6 percent perfor-
mance improvement relative to manual scheduling on the
CPU as a result of lowered contention for CPU cycles.

4.6 Programmability Evaluation

HCL2 runtime and language features were primarily moti-
vated by the characteristics and requirements of the KMeans
and Pairwise Similarity Mahout jobs. Anecdotally, the
implementation of Fuzzy KMeans, Dirichlet, and Bayes in
HCL2 from their implementations inMahout required about
six hours of development time each. This time includes:

1) Gaining an understanding of the overall algorithm.
2) Understanding howMahout’s existing infrastructure

is used to implement that algorithm.
3) Selecting the Mahout code which could be re-used in

HCL2 and implementing any application-specific
glue code for Mahout functionality which could not
be re-used. In general, this includes pieces of
Mahout’s abstraction layers that make extensive use
of object references and dynamic class loading, as
these Java features are not supported by APARAPI’s
bytecode-to-OpenCL translator.

4) Correctness verification and performance tuning of
the resulting HCL2 implementation. During this

TABLE 6
Relative Performance of Auto-Scheduled and Manual Runs
Based on the Number of Auto-Scheduled Runs Whose

Execution Time was Within 10 Percent of the Mean of the
Manually Scheduled Runs, and the Relative Speedup

of the Fastest Auto-Scheduled Run Relative to
the Mean of the Manually Scheduled Runs

Benchmark Platform A Platform B

# Runs Relative Perf. # Runs Relative Perf.

KMeans 17/20 0.99x 19/20 1.02x
Fuzzy KMeans 8/20 0.98x 18/20 0.97x
Dirichlet 7/10 0.95x 9/10 0.98x
Pairwise 17/20 0.96x 0/20 0.83x
Bayes 11/20 1.06x 19/20 1.04x

TABLE 7
Overhead Added by the Auto-Scheduler

Benchmark Speculative Performant Revising

KMeans 0.004% 0.07% 0.02%
Fuzzy KMeans 0.0026% 0.07% 0.04%
Dirichlet 0.0021% 0.07% 0.02%
Pairwise 0.0017% 0.03% 0.04%
Bayes 0.0027% 0.07% 0.5%

These percentages are means across all auto-scheduled runs on all platforms.

TABLE 8
Number of Tasks Placed on Each Type of Device by

the HCL2 Auto-Scheduler in Platforms A and B

Benchmark Platform A Platform B

Map Reduce Map Reduce

KMeans 100 GPU 2 CPU 100 GPU 2 CPU
Fuzzy KMeans 50 GPU 2 CPU 20 GPU 2 CPU
Dirichlet 100 GPU N/A 20 GPU N/A
Pairwise 12 CPU 2 CPU 12 CPU 2 CPU
Bayes 100 JVM 2 GPU 50 JVM 2 JVM
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step, the HCL2 Debugger was useful for analyzing
any tasks that exhibited memory faults on OpenCL
devices, for generating a snapshot of task inputs to
help with identifying correctness errors, and for cre-
ating test inputs for isolated performance testing of
auto-generated OpenCL kernels. The HCL2 Profiler
was useful in this development stage as it facilitated
the analysis of the computational and I/O perfor-
mance of the full HCL2 system. HCL2 Profiler
timeline visualizations made identification of perfor-
mance hotspots straightforward and helped with
locating areas where computation-communication
overlap in the HCL2 system could be improved.

To understand the code changes required to port a
Mahout application to HCL2, consider the map and reduce
implementations for Fuzzy KMeans in Figs. 4 and 5.

The Fuzzy KMeans mapper calculates the closest cluster
to the current point (represented by a sparse vector stored
in inputIndices and inputVals) by iterating over all
clusters stored in global vectors, accessible via getGloba-

lIndices() and getGlobalVals(). Once the closest
cluster has been found, the probability weight for that clus-
ter is calculated based on the distances to all clusters. The
input data point is then written, along with the cluster it has
been classified into and the confidence of that classification.
This code is written entirely in the high-level Java program-
ming language with no manual memory management

and straightforward method calls for accessing global data.
Porting from the original Mahout code was straightforward.
Because Mahout’s software architecture maximizes the
amount of code shared by similar algorithms, Mahout
applications are easily portable to HCL2 because HCL2’s
features were directly motivated by Mahout requirements.

The Fuzzy KMeans reducer aggregates the points classi-
fied in the same cluster, weighted by cluster probability, to
generate a new cluster centroid. This is trivially accom-
plished using an HCL2 intrinsic function, merge. This
merge function is equivalent to Mahout’s VectorSumRe-

ducer class, a common reducer task in the Mahout cluster-
ing framework that sums multiple vectors into a single
output vector. Porting from one to the other is straightfor-
ward. merge is used in KMeans, Pairwise Similarity, Fuzzy
KMeans, and Naive Bayes.

5 RELATED WORK

Previous projects on programming heterogeneous architec-
tures through MapReduce frameworks or on accelerating
Hadoop have taken different approaches or focused on a
subset of the problems addressed by this work.

5.1 Accelerating MapReduce

The primary goal of HCL2 was to accelerate the perfor-
mance of Hadoop MapReduce with minimal impact on its
high-level, productive, and popular programming model.
This section describes other projects with similar goals but
different approaches.

Apache Spark [10], [11] offers a different programming
model abstraction on top of Hadoop-supported data stores.
Spark’s programming model offers more flexibility than
Hadoop MapReduce, including operations like parallel
map, parallel reduce, parallel filter, parallel sample, and
more. Because Spark natively caches values in-memory, it
primarily outperforms Hadoop MapReduce on iterative or
graph applications where the output of one task is re-used
as the input of another [11], [12]. As HCL2 was an investiga-
tion into adding heterogeneity to an existing programming
model, we deliberately chose to limit extensions to the pro-
gramming model and try to adhere as closely to Hadoop
MapReduce’s existing programming abstractions. Both
HCL2 and Spark operate on distributed platforms and dis-
tributed datasets, though only HCL2 natively supports het-
erogeneous platforms. Spark and HCL2 share the goal of
improving performance relative to Hadoop MapReduce,
but take different approaches: Spark introduces a more
flexible, featureful, and complex programming abstraction

Fig. 4. Fuzzy KMeans HCL2 mapper code snippet.

Fig. 5. Fuzzy KMeans HCL2 reducer code snippet.
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with better in-memory caching of intermediate outputs,
while HCL2 tries to integrate accelerator hardware seam-
lessly into an existing programming model. However, Spark
and HCL2 are complementary, not competitive. An interest-
ing direction for future research is to explore how accelera-
tors and Spark can be used together to improve both the
computational and I/O performance of distributed applica-
tions on the Hadoop platform.

Work done as part of GPMR [13] developed a custom
distributed MapReduce implementation in C++ and CUDA
which uses GPUs to execute mappers, reducers, and a num-
ber of intermediate stages which were added to the MapRe-
duce pipeline to reduce communication costs. GPMR
exposes features of CUDA, such as local synchronization, to
the application developer, which HCL2 does not. While
GPMR supports multi-GPU execution it does not execute
application computation on the CPU, which may lead to
underutilized hardware or suboptimal scheduling.

Like HCL2, the work in [14] builds on the existing infra-
structure supplied by Hadoop. This work focuses exclu-
sively on scheduling problems, foregoing Hadoop’s Java
programming model for C++ and CUDA. A simpler version
of HCL2’s auto-scheduler is used in which 1) only the
OpenCL-CPU and OpenCL-GPU HCL2 devices are sup-
ported, 2) occupancy of those devices is not considered a
factor in execution time, 3) only map tasks are considered
eligible for GPU execution, and 4) no information on task
performance is persisted across jobs. The evaluation of this
work is also performed on outdated versions of both CUDA
and Hadoop.

Surena [15] also accelerates Hadoop using GPUs. Similar
to the work in [14], Surena uses a simple scheduling algo-
rithm that pre-executes a set number of tasks on all avail-
able devices before switching to auto-scheduling. The
effects of device utilization on performance are also ignored,
and Surena assumes that all tasks fit within GPU memory.
The evaluation of Surena focuses on relatively simple appli-
cations compared to the Mahout benchmarks used to evalu-
ate HCL2.

HCL2 builds on the lessons learned from previous work
in HadoopCL [4] to be more generally applicable and per-
formant. While this previous work achieved efficient sched-
uling of very simple MapReduce applications on a single
platform, building HCL2 required starting from a clean
slate both in terms of design and implementation. Relative
to HadoopCL, HCL2 expands to include auto-scheduling, a
simpler and more feature-rich programming model, a wider
range of supported data types, and as a result can be evalu-
ated on real-world, challenging, and irregular applications.

5.2 Machine Learning Programming Frameworks

While the development of HCL2 was guided by machine
learning applications, its scope is not limited to them. In
fact, it can be applied to any application that can be decom-
posed onto the MapReduce abstraction. However, as this
paper is guided and evaluated by machine learning applica-
tions it is important to consider other frameworks that can
be used to accelerate machine learning applications.

Caffe [16] is a single-node framework for neural net-
works that supports a general data storage format, has
many neural network primitives as first-class citizens of the

framework, and supports both CPU and GPU execution.
Caffe is similar to HCL2 in that both make plugging in new
algorithms simple and easy. However, Caffe only supports
plugging in new algorithms related to neural networks,
while HCL2 supports arbitrary MapReduce applications.
Additionally, the code written for Caffe must be written
specifically for the architecture used and in low-level pro-
gramming languages like C++ and CUDA, whereas in
HCL2 the processor architecture used is completely trans-
parent to the user. Finally, Caffe does not natively support
distributed execution, automatic scheduling, or a variety of
the advanced features of HCL2.

NVIDIA cuDNN is a CUDA library that exclusively tar-
gets deep neural networks. cuDNN provides a number of
primitive operations that are commonly used in deep neural
networking, implemented on the GPU to achieve greater
than 10 times speedupwhen used as a backend to Caffe, rela-
tive to Caffe on the CPU.While cuDNN offers a programma-
ble abstraction for deep neural networks on the GPU, it
offers no extensibility or distributed execution and does not
support CPU execution, all of which are supported byHCL2.

6 CONCLUSION

HCL2’s programming model makes transitioning Hadoop
applications to heterogeneous execution straightforward by
retainingmany of the same programming concepts and APIs.
From the programmer’s perspective, map, combine, and
reduce tasks written in Java execute transparently on any
available HCL2 device. While this work focuses on HCL2’s
development as motivated by machine learning applications,
HCL2’s applicability is not limited tomachine learning.

In Section 2.2 we listed eight criteria required for a new
programming system to remain relevant to real-world
applications. HCL2 satisfies all eight criteria:

1) HCL2 supports heterogeneous execution of any com-
putation that can be expressed in the OpenCL kernel
language, and can fall back to the JVM for more com-
plex kernels that require Java language or library
features.

2) HCL2 is programmed using the high-level Java pro-
gramming language and uses MapReduce abstrac-
tions that are simple and familiar to many
programmers, particularly those who have previous
experience with Hadoop.

3) HCL2 supports processing of primitive, composite,
and sparse vector data types.

4) HCL2 manages JVM and OpenCL memory for the
programmer. HCL2 also supports manual or auto-
matic scheduling of computation on a heterogeneous
system, using historical performance data to
improve scheduling decisions over time.

5) HCL2 adds dynamic memory allocation to APAR-
API, facilitating kernels whose memory require-
ments cannot be calculated ahead of time.

6) HCL2 aggregates inputs and batches their processing
on heterogeneous devices. HCL2 does not require
that all inputs fit on a single device at the same time.
By integrating HCL2 with Hadoop, we also gain the
benefits of HDFS as a massive data store.
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7) HCL2 natively supports globally shared sparse vec-
tors that are both readable and writable from the
JVM and from OpenCL devices.

8) HCL2 includes native programmer-friendly debug-
ging and profiling tools.

Moving forward, we plan to take the lessons learned from
the implementation of HCL2 and apply them to transpar-
ently accelerating Scala and Spark computation with
OpenCL kernels across awider range of hardware platforms.

HCL2 makes contributions in heterogeneous scheduling,
programming models, and integrated development tools. It
represents a holistic approach to distributed, heterogeneous
software development designed to minimize programmer
burden when optimizing execution of general applications
on distributed, heterogeneous systems.
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