
PY-PITS: A Scalable Python Runtime System for
the Computation of Partially Idempotent Tasks

Edson Borin∗, Caian Benedicto†, Ian L. Rodrigues†, Flávia Pisani∗, Martin Tygel‡, and Mauricio Breternitz Jr.§
∗Institute of Computing (IC), University of Campinas (UNICAMP) – Campinas, SP, Brazil

Email: {edson, fpisani}@ic.unicamp.br
†Center for Petroleum Studies (CEPETRO), University of Campinas (UNICAMP) – Campinas, SP, Brazil

Email: {caian, ian.liu}@ggaunicamp.com
‡Institute of Mathematics, Statistics and Scientific Computing (IMECC)

University of Campinas (UNICAMP) – Campinas, SP, Brazil

Email: tygel@ime.unicamp.br
§AMD Research – Austin, TX, USA

Email: mauricio.breternitz@amd.com

Abstract—The popularization of multi-core architectures and
cloud services has allowed users access to high performance
computing infrastructures. However, programming for these
systems might be cumbersome due to challenges involving system
failures, load balancing, and task scheduling. Aiming at solving
these problems, we previously introduced SPITS, a program-
ming model and reference architecture for executing bag-of-task
applications. In this work, we discuss how this programming
model allowed us to design and implement PY-PITS, a simple and
effective open source runtime system that is scalable, tolerates
faults and allows dynamic provisioning of resources during
computation of tasks. We also discuss how PY-PITS can be
used to improve utilization of multi-user computational clusters
equipped with queues to submit jobs and propose a performance
model to aid users to understand when the performance of PY-
PITS scales with the number of Workers.

I. INTRODUCTION

With the ever-increasing amount of data being generated

every day, it has become apparent that using a single machine

is no longer feasible in many real-world applications. While

exploiting parallel solutions in multi-core architectures is still

of paramount importance, looking at distributed approaches

such as using computer clusters and the cloud has become

imperative in these situations.

The need for parallelized code has fostered the creation of

several Application Programming Interfaces (APIs), program-

ming models, and libraries over the years. To name a few,

we have OpenMP [1], OpenCL [2], CUDA [3], TBB [4], and

MPI [5]. Still, most of these tools present a series of require-

ments, such as being restricted to systems with either shared

or distributed memory or demanding the use of specialized

compilers, operating systems, and libraries. Moreover, many

of these do not handle fault tolerance transparently, an essential

feature for scaling the execution of programs to a large number

of processing nodes.

In this scenario, it is important to study the characteristics

of parallelizable applications in order to take advantage of

useful properties they might have. One such case is the class

of embarrassingly parallel problems, which are applications

that are trivially parallelized due to the fact that they can be

immediately divided into completely independent parts that

can be executed simultaneously [6]. Ray tracing in computer

graphics [7], matrix multiplication [8], Monte Carlo integra-

tion [6], and several techniques to analyze seismic data [9]–

[11] are important examples of such problems.

Designing and implementing parallel programs for embar-

rassingly parallel problems is usually no harder than doing

so for their serial versions. Nonetheless, ensuring fault toler-

ant and efficient execution of these solutions on distributed

systems is highly dependent on the programming model and

runtime system used to create them. For instance, one could

easily leverage the MPI standard to implement a parallel ray

tracer by independently tracing the path of light through each

of the image’s pixels. However, ensuring that this program

gracefully handles node failures on a large cluster would

require a significant programming effort to include this mech-

anism. Also, guaranteeing performance scalability on systems

that dynamically release or provide new computing resources

during execution may be challenging when using MPI.

Several programming tools have emerged to aid the creation

of scalable fault-tolerant systems. A few examples of this

are Akka [12] for the actor model of concurrency in Java

and Scala, Hadoop [13] for MapReduce computations, Pregel

for graph processing [14], and TensorFlow [15] for machine

learning. In each of their target applications, these engines

improve productivity by letting the programmer focus on the

task at hand instead of the minutia of the parallel execution.

The programming model used by the Scalable Partially

Idempotent Tasks System (SPITS) [16] also abstracts exe-

cution details, thus allowing the easy development of dis-

tributed approaches for embarrassingly parallel problems. This

programming model and its respective API provide a clear

separation of the code created to solve the problem and

the code required to distribute and manage the execution

on parallel computing systems. As a result, the application

developer can target the implementation of the solution while

the runtime system developer can concentrate on how the

IEEE 28th International Symposium on Computer Architecture and High Performance Computing Workshops

0-7695-5996-4/16 $31.00 © 2016 IEEE

DOI 10.1109/SBAC-PADW.2016.10

7

2016 International Symposium on Computer Architecture and High Performance Computing Workshops

978-1-5090-4844-1/16 $31.00 © 2016 IEEE

DOI 10.1109/SBAC-PADW.2016.10

7

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on May 13,2020 at 15:31:47 UTC from IEEE Xplore. Restrictions apply.

parallel execution will be performed.

In this study, we discuss how the properties of the SPITS

programming model allow the development of simple runtime

systems that tolerate faults and allow dynamic provisioning

on large clusters. We also present a simple and effective

reference runtime system implemented in Python and several

experimental results that show that it is scalable and fault

tolerant. Finally, we propose a performance model that can be

used to aid users to understand when the performance of the

runtime system scales with the number of computing nodes.

This paper is organized as follows: Section II presents

related work. Section III discusses the programming model

and how its properties simplify the implementation of fault

tolerance and load balancing mechanisms. Section IV intro-

duces the reference runtime system. Section V shows the ex-

perimental results. Finally, Section VI draws our conclusions.

II. RELATED WORK

The Task Superscalar [17] programming model extracts

task-level parallelism in the same way instruction-level par-

allelism is explored. A sequential thread dispatches tasks with

its input/output properly annotated, allowing the runtime to

construct a dependency graph, which is executed out-of-order

by the available resources. Scheduling can be performed by

either software [18]–[20] or hardware. Etsion et al. [17] argue

that software solutions are inherently slow, impeding scalabil-

ity. The advantage of this model is the simplicity to extract

parallelism on complex problems: the programmer exposes

which parameters are input, output or inout in the kernel

functions and uses them as if the program was sequential.

Google engineers have faced this issue and discussed it

on their MapReduce paper [21], where they proposed a new

programming model to a) ease the implementation of programs

to process large data sets and b) enable the implementation

of a fault tolerant and scalable distributed runtime system

for these programs. The motivation for their work lies on

the observation that the developers that designed programs

for straightforward computations were creating complex and

obscure code to deal with runtime issues, such as fault toler-

ance and scalability. As a result, the MapReduce programming

model enabled them to produce simple code that scaled

gracefully on thousands of machines, even when computing

nodes fail.

Similar to Google engineers, our group was producing a

great amount of code to handle node failures when implement-

ing MPI programs to solve highly parallel seismic processing

problems. In order to reduce the programming complexity, we

designed a new programming model and runtime architecture

to: a) hide parallel execution details from the user, enabling

them to focus on the problem rather than performance and

scalability issues; and b) ensure minimal program properties

that ease the implementation of fault tolerant and scalable

runtime systems. We discuss this programming model and its

system architecture in the following sections.

One of the main properties that our model relies on to

simplify the fault tolerance and load balancing mechanisms of

its runtime is idempotence [22], which has been used in many

situations within the computer science field. De Kruijf and

Sankaralingam [23] proposed an architecture of processors that

leverage idempotence to implement speculative processor op-

timizations without using costly mechanisms of checkpointing

to recover the architectural state. The authors observed that the

same state could be rebuilt by simply re-executing idempotent

regions. In another study by the same authors and Jha [24],

they implemented a compilation technique aiming at dividing

a program into idempotent regions. This time, the idempotence

concept was extrapolated to tasks and this property was used

to facilitate the implementation of fault tolerant mechanisms

and load balancing in heterogeneous systems.

A second important feature for both our fault tolerance and

load balancing solutions is the speculative execution of tasks,

which is also a well-known approach. For instance, Alves et

al. [25] introduce a Dataflow Error Recovery mechanism that

adopts redundant execution for online error detection and re-

covery on dataflow systems and Marzulo et al. [26] employed

speculation on the TALM model for dataflow execution to

improve the system’s performance.

III. SPITS PROGRAMMING MODEL

When we first came across the challenge of scaling our

programs to more than one machine, we decided to look past

the MPI standard in order to seek models that would ease the

implementation of fault tolerance and dynamic provisioning

mechanisms. Despite the existence of several tools [5], [13],

[18], most of them required specific versions of operating sys-

tems or the installation of software with root privileges, which

was unfeasible for us. Another setback was the fact that some

of the programming models relied on specialized compilers or

complex runtime systems. As a result, we designed a simple

programming model dedicated to our needs, which we called

Scalable Partially Idempotent Tasks System (SPITS) [16].

Our initial attempt at designing this system resulted in

a bag-of-tasks-based programming model that requires the

user to provide only two functions: generate_task and

execute_task. First, the runtime system repeatedly in-

vokes generate_task on a master node to create new

tasks, only stopping when an empty task is returned. Then,

it spreads the tasks across the worker nodes. This is a simple

action for the runtime system, as tasks are represented as a

sequence of bytes. Finally, the runtime system executes the

tasks in parallel by invoking execute_task on the Workers.

In this model, there is no restriction on tasks other than the

fact that they must be serialized (encoded as sequence of bytes)

when returned by generate_task and subsequently deseri-

alized by execute_task. From a programmer’s stand point,

this interface has requirements, but is still straightforward, as

it does not require handling parallel execution details such

as scheduling and load balancing. Furthermore, this approach

greatly simplifies the implementation from the perspective of

the runtime system developer, seeing that tasks are merely

arrays of bytes and can be easily transferred through the

network or any persistent storage system.

88

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on May 13,2020 at 15:31:47 UTC from IEEE Xplore. Restrictions apply.

Although this model allowed us to design uncomplicated

runtime systems capable of both distributing tasks for parallel

execution on clusters and managing the dynamic provisioning

of resources, it was still not trivial to aggregate transparent

handling of node failures to these structures. The main diffi-

culty in implementing this feature being that we must make

sure the partial execution does not affect the final result of the

application in case a node fails during execute_task.

Checkpointing is a technique that can be used to guarantee

that the partial execution does not affect the final results of

the application. In this approach, the state of the application is

periodically stored so that the last valid point in the execution

can be recovered for restarting upon a failure. Despite being

generic enough to address most of the problems brought

by nodes failing, this method can also be very complex to

implement on distributed runtime systems and may add high

performance and memory overheads to the execution [27].

In our case, an alternative approach is to create the means

for the execute_task function to be executed speculatively

and its side effects only committed when the task has been

carried out. This way, if there is an error while the function

is running, the partial results are discarded and the task can

be safely re-executed on another node. Nevertheless, ensuring

that the speculative execution of the code is possible can

prove to be difficult depending on the implementation of

execute_task. Also, if an error happens during the commit

operation, it may still compromise the state of the program.

To make the implementation of the fault tolerance mecha-

nism easier for the runtime system developer, we propose that

this burden be shared with the application programmer by re-

quiring that the code have a property called idempotence [22].

A. Idempotence and Partially Idempotent Tasks

An idempotent operation is one that has the same effect

whether you apply it once or more than once. For example,

multiplying a number by zero is idempotent, since the result

of 4× 0× 0× 0 is the same as 4× 0 [22].

Still, despite the fact that several executions of idempotent

tasks always produce the same results, the consolidation of

these outputs may not always be an idempotent operation in

itself. Consider, for instance, a task that appends its results

to the end of a file. Unlike file overwriting, appending is a

non-idempotent operation, since if it were executed twice, the

file would contain a duplicated task result.

When we analyze this, we see that requiring the function

execute_task to be completely idempotent would greatly

restrict the types of problems that can be solved with the

aforementioned programming model. To address this issue, we

proposed the concept of partially idempotent tasks, or PITs,

where the computation of a task is subdivided in two phases:

execution and consolidation; and, while the execution of the

task is an idempotent operation, consolidation is not.

Compared to our first design, the new solution addi-

tionally requires that: a) the programmer make sure that

execute_task is an idempotent function that takes a task

as an argument and returns its results as an array of bytes; and

b) they provide the commit_task function, responsible for

consolidating the results produced by execute_task.

B. PITS, Fault Tolerance, and Load Balancing

In the execution phase, a runtime system for PITs can

tolerate the failure of nodes that suddenly halt, stop receiving

or sending messages, or take too long to respond by simply

re-starting execute_task for the interrupted tasks on other

nodes. We note that this approach does not detect these

errors, only mitigates their effects through task speculation.

Therefore, failures in which the node produces the wrong

result are currently not handled.

As generate_task and commit_task are non-

idempotent functions, they can not be re-executed in case

of errors. Still, for our target applications (e.g., the seismic

processing method CRS [9]), these functions are typically fast

and can be efficiently executed by a small number of machines

or perhaps even a single one, making failures very unlikely,

as discussed by Dean and Ghemawat [21].

Another advantage of operating with tasks that have a

guarantee of idempotence for part of their execution presents

itself when we consider load balancing issues. Since the

execution phase of a task can be carried out several times

and always gives rise to the same final result, it is possible to

speculatively schedule the execute_task function to run

on idle nodes. In this way, computations of a certain task

being performed on slower nodes can be interrupted when

one of their copies finishes, thus better utilizing the resources

of heterogeneous clusters and clouds.

IV. PY-PITS: AN OPEN SOURCE REFERENCE

IMPLEMENTATION

PY-PITS is an open source1 reference implementation of the

Scalable Partially Idempotent Tasks System (SPITS), which

was proposed by Borin et al. [16]. It was created to allow

further research and development of the API and the schedul-

ing and resource managers. Most importantly, it also enabled

the immediate development of commercial applications for

our clients. We chose to implement the PY-PITS runtime in

Python, since this language facilitates quick prototyping and

development, does not require compilation, and is available on

most UNIX-based systems. The current version of the runtime

is compatible with Python 2.6, 2.7, and 3.x, which covers most

of the versions shipped with older UNIX distributions.

Rather than implementing complex heuristics and algo-

rithms to handle the parallel execution of several jobs at the

same time, similar to the solutions adopted by TORQUE [28]

and other resource managers, PY-PITS was designed to coor-

dinate, instrument, and give detailed statistics on the execution

of a single job. Nonetheless, more than one job can be con-

currently executed in a cluster environment through multiple

instances of PY-PITS. Additionally, PY-PITS is compatible

with resource managers that were designed to work with

MPI, allowing the deployment of the code on systems running

legacy software and operating systems.

1https://github.com/eborin/pypits

99

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on May 13,2020 at 15:31:47 UTC from IEEE Xplore. Restrictions apply.

A. Architecture Overview

Our runtime implementation follows the general architecture

defined by the SPITS [16], where a Job Manager produces

tasks that are consumed by Task Managers and dispatched

to individual Workers. Once computed, the results are then

sent to a Committer, which consolidates them. An optional

main function may also be used to launch consecutive parallel

segments of the same job instead of a single parallel job.

The PY-PITS runtime consists of two separate executables:

a combined Job Manager/Committer and a Task Manager,

responsible for loading the user module and handling the

dynamic provisioning and fault tolerance mechanisms defined

by the SPITS programming model.

B. Combined Job Manager/Committer

We decided to combine the Job Manager and the Committer

into a single, multithreaded executable, since none of our target

applications ever required the final result to be available on a

node other than the one being used to generate tasks.

The management of tasks works by creating them on

demand and appending them to the end of a circular queue

that stores tasks already submitted to Task Managers. A task

is then only removed from the queue once its result has

been successfully received and committed. Once all tasks are

created and submitted, the Job Manager assumes the ones

which are still in the queue have failed, and starts re-submitting

them to guarantee fault tolerance. The same mechanism allows

the system to avoid long latencies on heterogeneous platforms.

The addition and removal of Task Managers is controlled

by an announcing mechanism. Currently, the list of available

nodes running Task Managers is provided through a file. Nodes

listed in this file are accessed in a round-robin fashion by the

Job Manager thread and tasks are sent to each Task Manager

node until its internal queue is full. Similarly, the Committer

thread accesses each node to fetch the completed tasks from

its Task Manager’s queue.

C. Task Manager and Worker

The PY-PITS Task Manager is responsible for consuming

individual tasks and assigning them to Workers without any

commitment to the order in which tasks were received. It lever-

ages the dynamic loading mechanism available on GNU/Linux

operating systems to load the user code so that Worker threads

can run the execute_task function.

A multithreaded listener is responsible for serving requests

from both the Job Manager and the Committer threads to

maximize data throughput and overlap data transfers with task

executions. Requests for pushing tasks do so through a task

queue and the Task Manager can control an extra queue space

to help hiding network latency. Requests for fetching results

access a separate queue and return as many results as available.

A Worker is a theoretical construct from the SPITS model

and, currently, it is translated directly into a thread in the PY-

PITS runtime process. This design may cause the whole Task

Manager to fail in case a Worker fails, but the system is still

robust in the sense that unfinished tasks on this Task Manager

will be re-executed by Workers on other Task Managers.

Moreover, the dynamic provisioning system allows us to start

another Task Manager to replace the one that failed. Since the

SPITS model is sufficiently generic, sturdier mechanisms such

as multiprocessing can be applied.

V. EXPERIMENTAL RESULTS

We performed several experiments to validate PY-PITS.

The results presented in this section were produced using a

system with 3 nodes, each one configured with an Intel Xeon

Ivy Bridge CPU E5-2640 v2 @ 2.60 GHz (6 cores/12 logical

cores), 32 GB of RAM, a 2 TB HD, and Ubuntu 14.04 LTS.

The nodes were connected through a Gigabit Ethernet Switch.

A. Dynamic Provisioning and Fault Tolerance

The dynamic provisioning test consists in progressively

adding new nodes during the execution of a job, while the

fault tolerance test is performed by terminating Task Man-

ager processes during their execution. It is also possible to

simulate an intermittent network connection by removing and

adding nodes to the Job Manager/Committer, this latter test

is particularly interesting because it shows that temporary

connectivity losses do not prevent tasks from executing and

being committed, as long as the connection between the Task

Manager and the Committer becomes available again.

Figure 1 shows the commit rate when running a 180-task

job. The x-axis indicates the time when a task is committed

and the y-axis indicates the total number of tasks committed at

that time. The size of the task is 256 kB and the computational

time is 1 s. This test starts by having only one computing node

with 1 Worker available to the Job Manager. Then, a second

node with 1 Worker becomes accessible and, after that, a third

one with 12 Workers is ready for use. Finally, the last node

is disconnected to simulate a node failure. The first thing to

notice is the effect in the committing rate when adding and

removing nodes. The system commits roughly 1/2/14 tasks per

second when working with 1/2/14 Workers. The second, and

most important, observation is that the system was capable

of executing and committing the 180 tasks even with a node

being disconnected in the middle of the computation.

Fig. 1. Commit rate of tasks with dynamic provisioning.

1010

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on May 13,2020 at 15:31:47 UTC from IEEE Xplore. Restrictions apply.

The task submission policy also aims to solve heterogeneous

performance issues since the runtime sees long running tasks

as lost when the circular queue wraps around, causing them to

be re-started on other nodes. If the original tasks commit be-

fore the newly-submitted ones, the later results are discarded.

B. Cluster Queues and Dynamic Provisioning

Computing clusters administrators usually implement job

submission queues so users can share the system fairly. As an

example, one of the clusters we share with other researchers

at the university contains 32 nodes, with 40 cores each, and

is configured with 3 submission queues:

1) small: allocates one node per job and allows the same

user to run at most 20 jobs concurrently;

2) medium: allocates 2 to 4 nodes per job and allows the

user to run at most 3 jobs concurrently;

3) large: allocates 5 to 8 nodes per job and does not allow

the user to run jobs concurrently.

Curiously, there is no queue that allows the user to submit

a job that uses the 32 nodes at the same time. One of the

main reasons is that this kind of queue could cause the system

to be underutilized. Underutilization happens because, before

dispatching a job, the system must ensure that a minimum

number of nodes is available, and in this case the system would

wait for all running jobs to finish, possibly starving most of

the nodes while some very long running jobs are running.

We created a small script that employs the dynamic pro-

visioning mechanism implemented in PY-PITS to solve this

problem. It checks for a file on the user directory that contains

the address of the Job Manager. In case it does not exist, it

creates a Job Manager to start the computation, otherwise,

it creates a Task Manager and instructs it to connect to the

already existing Job Manager. In this sense, the first job to run

on the system creates the Job Manager, while the remaining

jobs, which may be scheduled to run later, create new Task

Managers that connect to the existing Job Manager and start

computing tasks on its behalf. This approach allows us to fairly

use all the 32 nodes of the system concurrently even if the

queues do not allocate the whole cluster for a single job.

C. Bottleneck Analysis and Performance Model

In this section, we perform a bottleneck analysis and pro-

pose a performance model for the PY-PITS runtime. In order

to evaluate the bottlenecks, we execute 1440 tasks using 2

Task Managers with 12 Workers each, a total of 24 Workers.

Defining the task length to be the amount of time the Worker

takes to execute a task, we would expect the system to take

60 s (1× (1440/24)) to run 1440 tasks of length 1 s and 120 s

to run 1440 tasks of length 2 s. In fact, this is what we see in

Figure 2, which shows the time it takes PY-PITS to run 1440

tasks with 24 Workers under different task configurations.

Ideally, the performance of the system would be limited only

by the number of Workers. However, in addition to executing

the tasks, the runtime system must transfer the tasks from the

Job Manager to the Task Managers and transfer their results

back to the Committer, which takes time.

Fig. 2. Performance of PY-PITS running 1440 tasks with 24 Workers.

In order to hide the latency introduced by data transfers,

PY-PITS buffer tasks and results so that data transfers can be

overlapped with computation. In fact, as we can see in Fig-

ure 2, if we increase the size of tasks up to a given size there

are no significant changes in execution time. Nonetheless, if

the time it takes to transfer the tasks/results is longer than the

time it takes to compute the tasks, the performance becomes

limited by the network bandwidth instead of the number of

Workers. This is the behavior we see when we increase the

task size too much.

Since PY-PITS has only one Job Manager, we can model

the performance of the system as:

Exec. Time = Max

{
NTasks × (Tlen/NWorkers) (1)

NTasks × Tsz/JMbw) (2)

where NTasks is the number of tasks, Tlen is the time it takes

to execute them (task length), Tsz is their size, NWorkers

is the number of Workers, and JMbw is the Job Manager

network bandwidth. Equation (1) estimates the time it would

take to execute all tasks using NWorkers and equation (2)

estimates the time it would take to send all tasks from the Job

Manager to the Task Managers. Since the execution of tasks

is overlapped with data transfers, the time it takes to run the

system is estimated as the maximum of (1) and (2). For the

sake of simplicity we only include the Job Manager bandwidth

on the model, however, in case the tasks results are larger than

the tasks themselves, the model can be easily extended to take

into account the bandwidth of the Committer.

As illustrated in Figure 2, the performance estimated by this

model (indicated by solid lines) matches very well the perfor-

mance observed in our experiments (indicated by markers).

By analyzing the performance model, we conclude that

the performance only scales with the number of Workers in

situations where:

Tlen >
Tsz ×NWorkers

JMbw

Figure 3 shows the minimum task length to ensure the

system performance scales with the number of Workers when

JMbw = 8 MB/s, which is the bandwidth measured during

1111

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on May 13,2020 at 15:31:47 UTC from IEEE Xplore. Restrictions apply.

our experiments. Note that, while 1 kB-tasks need to run for at

least 1.53 s for the system performance to scale when execut-

ing with 100 000 nodes, the minimum task length requirement

grows to 12 500 s for 8 MB-tasks.

Fig. 3. Minimum task length to ensure the system scales with the number of
Workers when JMbw = 8 MB/s.

Typically, the tasks processed by our seismic processing

programs have a few kilobytes and run for several seconds,

hence, PY-PITS in its current state is capable of scaling the

performance of our applications up to thousands of Workers.

Nonetheless, in case one needs to run shorter (or larger)

tasks on thousands of machines, the runtime system still has

plenty of room for optimizations that would allow us to

improve the results shown in Figure 3. As an example, the

bandwidth measured in our experiments (∼8 MB) is much

lower than the performance that can be achieved on our

hardware infrastructure.

VI. CONCLUSION

In this paper, we discussed how the SPITS programming

model allowed us to design and implement PY-PITS, a sim-

ple and effective open source runtime system that tolerates

faults and allows dynamic provisioning of resources during

computation of PITs. We presented the design of PY-PITS

and a few experimental results that showed that it is scalable

and fault tolerant. Also, we discussed how PY-PITS can be

used to improve utilization of multi-user computational cluster

equipped with queues to submit jobs and, finally, we proposed

a performance model to aid users to understand when the

performance of PY-PITS scales with the number of Workers.

Future work includes the investigation of more fault-

tolerance techniques and the execution of tests on a larger

cluster in order to further explore the scalability of our system.

ACKNOWLEDGMENTS

The authors thank Petrobras, CAPES, FAPESP, and CNPq

for their invaluable financial support. We would also like to

thank our colleagues at the HPG lab for their contributions.

REFERENCES

[1] L. Dagum and R. Menon, “OpenMP: An Industry-Standard API for
Shared-Memory Programming,” IEEE Comput. Sci. Eng., vol. 5, no. 1,
pp. 46–55, Jan. 1998.

[2] J. E. Stone, D. Gohara, and G. Shi, “OpenCL: A Parallel Programming
Standard for Heterogeneous Computing Systems,” IEEE Comput. Sci.
Eng., vol. 12, no. 3, pp. 66–73, May 2010.

[3] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable Parallel
Programming with CUDA,” Queue, vol. 6, no. 2, pp. 40–53, Mar. 2008.

[4] J. Reinders, Intel Threading Building Blocks, 1st ed. Sebastopol, CA,
USA: O’Reilly & Associates, Inc., 2007.

[5] M. P. I. Forum, “MPI: A Message-Passing Interface Standard,”
University of Tennessee, Knoxville, TN, USA, Tech. Rep., Jun.
2015, accessed: August 18, 2016. [Online]. Available: http://www.mpi-
forum.org/docs/mpi-3.1/mpi31-report.pdf

[6] B. Wilkinson and M. Allen, Parallel Programming: Techniques And
Applications Using Networked Workstations And Parallel Computers,
2nd ed. New York, NY, USA: Pearson Education, 2006.

[7] A. Chalmers, T. Davis, and E. Reinhard, Practical Parallel Rendering,
1st ed. Natick, MA, USA: A. K. Peters, Ltd./CRC Press, 2002.

[8] N. Matloff, Parallel Computing for Data Science: With Examples in R,
C++ and CUDA, 1st ed. Boca Raton, FL, USA: CRC Press, 2015.

[9] R. Jäger, J. Mann, G. Höcht, and P. Hubral, “Common-reflection-surface
stack: Image and attributes,” Geophysics, vol. 66, no. 1, pp. 97–109, Jan.
2001.

[10] O. C. Reyes, J. D. L. Puente, V. Puzyrev, and J. M. Cela, “Parallel and
numerical issues of the edge finite element method for 3D controlled-
source electromagnetic surveys,” in Proc. ICCSAT’15, 2015, pp. 1–6.

[11] M. Hori, T. Ichimura, M. L. L. Wijerathne, and K. Fujita, Application
of HPC to Earthquake Hazard and Disaster Estimation. Springer
International Publishing, Nov. 2014, pp. 203–220.

[12] J. Goodwin, Learning Akka, 1st ed. Birmingham, Warks, UK: Packt
Publishing, 2015.

[13] T. White, Hadoop: The Definitive Guide, 3rd ed. Sebastopol, CA, USA:
O’Reilly Media, 2012.

[14] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski, “Pregel: A System for Large-scale Graph
Processing,” in Proc. SIGMOD’10, 2010, pp. 135–146.

[15] M. Abadi et al., “TensorFlow: A system for large-scale machine
learning,” Google Brain, Mountain View, CA, USA, Tech. Rep.,
May 2016, accessed: August 19, 2016. [Online]. Available:
https://arxiv.org/abs/1605.08695

[16] E. Borin, I. L. Rodrigues, A. T. Novo, J. D. Sacramento, M. Breternitz,
and M. Tygel, “Efficient and Fault Tolerant Computation of Partially
Idempotent Tasks,” in Proc. SBGf’15, 2015, pp. 367–372.

[17] Y. Etsion, F. Cabarcas, A. Rico, A. Ramirez, R. M. Badia, E. Ayguade,
J. Labarta, and M. Valero, “Task Superscalar: An Out-of-Order Task
Pipeline,” in Proc. MICRO’10, 2010, pp. 89–100.

[18] J. Labarta, “StarSS: A programming model for the multicore era,” in
PRACE WorkshopNew Languages & Future Technology Prototypes at
the Leibniz Supercomputing Centre in Garching (Germany), 2010.

[19] E. Ayguadé, R. M. Badia, F. D. Igual, J. Labarta, R. Mayo, and E. S.
Quintana-Ortı́, An Extension of the StarSs Programming Model for
Platforms with Multiple GPUs. Springer Berlin Heidelberg, Aug. 2009,
pp. 851–862.

[20] P. Bellens, J. M. Perez, R. M. Badia, and J. Labarta, “CellSs: a
Programming Model for the Cell BE Architecture,” in Proc. SC’06,
2006, pp. 5–5.

[21] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on
Large Clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008.

[22] S. R. Leonard Richardson, RESTful Web Services, 1st ed. Sebastopol,
CA, USA: O’Reilly Media, 2008.

[23] M. de Kruijf and K. Sankaralingam, “Idempotent Processor Architec-
ture,” in Proc. MICRO’11, 2011, pp. 140–151.

[24] M. A. de Kruijf, K. Sankaralingam, and S. Jha, “Static Analysis and
Compiler Design for Idempotent Processing,” in Proc. PLDI’12, 2012,
pp. 475–486.

[25] T. A. O. Alves, S. Kundu, L. A. J. Marzulo, and F. M. G. França, “Online
error detection and recovery in dataflow execution,” in Proc. IOLTS’14,
July 2014, pp. 9–104.

[26] L. A. J. Marzulo, T. A. O. Alves, F. M. G. França, and V. S.
Costa, “TALM: A Hybrid Execution Model with Distributed Speculation
Support,” in Proc. SBAC-PADW’10, Oct 2010, pp. 31–36.

[27] I. P. Egwutuoha, D. Levy, B. Selic, and S. Chen, “A survey of fault
tolerance mechanisms and checkpoint/restart implementations for high
performance computing systems,” J. Supercomput., vol. 65, no. 3, pp.
1302–1326, Sep. 2013.

[28] G. Staples, “TORQUE Resource Manager,” in Proc. SC’06, 2006, article
no. 8.

1212

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on May 13,2020 at 15:31:47 UTC from IEEE Xplore. Restrictions apply.

