

e2eML: High Performance, Power Efficient Application of End-to-End Machine Learning Systems

Mauricio Breternitz INESC-ID University of Lisbon

Shonan Seminar: Advances on Heterogenous

Computing from HW to SW

sep.03.2018

Outline

Introduction

End-to-End DNN Potential Benefits- Global Optimization

Challenges Data Normalization, Artifacts, Adaptation Approach and Use Cases Related – TVM, Weld Research Framework & Plan

Research Support by Fundação para a Ciência e a Tecnologia (FCT) under project UID/CEC/50021/2013

Brief BIO, Publications, Patents

PhD – Carnegie-Mellon, ECE MSc – UNICAMP/Brazil BSc – ITA-Brazil

Work: IBM Research, Motorola, Times N, Intel Labs, AMD Research 49 U.S. Patents Issued, 54 U.S. Patents Pending

Publications

Citations 1609 H-index 24, i10-index 40 Computer Architecture, Computer Systems, Performance, Tuning Big Data, Machine Learning

Creator /General Chair : AMAS-BT International Workshop on Architectural/Microarchitectural Support for Binary Translation, joint with ISCA and CGO.

DEFINITION OF MACHINE LEARNING • Simple Definition: "Algorithms that Learn

Traditional Programming

In Traditional Programming, a Human expert encodes his knowledge of the relationship of data and desired output as a program to process input data to generate the desired output **Machine Learning**

In Machine Learning, the system autonomously learns the relationship of data and the desired output, creating classification rules (inference) to provide the desired output from similar input

▲ Machine Learning: A system capable of the autonomous acquisition and integration of knowledge

Challenge: Black Box -> Hardware

End-To-End DNN

Idealized Framework

Conjecture

- End-To-End DNN may lead to globally optimized results
 - Tailored code generator optimizing across layers may be better than handtuned generic libraries
 - Trained Network: tailored interconnect

MACHINE LEARNING: APPLICATION FRAMEWORK across MULTIPLE REGIONAL SCOPES

Compute reaction nearby the place data is captured, using locally stored knowledge

Examples - Car warning system using front camera image; Factory Sensor Input Compute reaction using aggregate data from a few, logically neighboring compute sites

Example: Traffic management and scheduling of a city-wide fleet Compute reaction using knowledge from a worldwide and long term memory Example: Netflix movie recommendation engine

HW Substrate(s)

- CPU, multicores
- Accelerators: CPU+GPU, CPU+FPGA
- Cloud
 - Accelerator cloud
- Edge, IoT

End-to-End ML Challenges

Chihuahua or Muffin?

- -Network Inspection
- -Who does what?
- -Adversarial Input

HW Substrate Requirements

- Reliability
- Resiliency

- Power Consumption
 - Absolute
 - Efficiency
- Latency
- Cost

KEY MACHINE LEARNING ALGORITHMS

- Classes of Machine Learning Algorithms:
 - Statistically-inspired algorithms: Bayesian Networks, Logistic Regression, Decision Trees, etc.
 - Deep Neural Networks(DNN)
 - rapidly becoming the preferred algorithm, currently provide the best solutions for image/speech/natural language processing
 - Biologically-inspired: simulated neurons
 - DNNs are a good match for heterogeneous (GPU, FPGA) acceleration because the mathematical operation to compute the effects of weighted inputs for multiple neurons is a matrix-vector multiplication.

DEEP NEURAL NETWORKS

- rapidly becoming the preferred algorithm, currently the best solutions for image/speech/natural language processing
- Biologically-inspired: simulated neurons
- Good match for AMD GPU acceleration because the mathematical operation to compute the effects of weighted inputs for multiple neurons is a matrix-vector multiplication.

A Simulated Neuron: A biologically inspired algorithm whereby a number of input values are provided to a simulated neuron, which computes an output based on a **weighted** combination of the input values

Network(DNN): A multi-layered sequence of simulated neurons

EXAMPLE: DEEP NEURAL NETWORK CLASSIFYING AN IMAGE

INFERENCE

Is the problem of identifying to which

categories a new observation belongs

- Examples Sort and Classify input into discrete categories
 - Create photo categories from input set (exemplified on previous slide)
 - Email: {message} classified as one of { spam, NOT-spam}
 - Diagnosis: { gender, symptoms} used to determine disease
- Uses Trained deep networks for RECOGNITION tasks
- Focus on efficient Forward computation
- Focus on Latency: Minimize end-do-end response time: smaller mini-batches

Inference: images are presented to the network to determine what class of image it is

TRAINING

- or LEARNING is the computationally-demanding task of determining the parameters of a neural network
 - Has both Forward, Backward propagation phases
 - State of the Art is GPU Acceleration
 - Focus on High Throughput

Images are presented to the network to determine class; erroneous outputs are propagated backwards correcting network parameters to achieve high accuracy:

End To End Machine Learning

Self Driving Car Example:

Map camera pixels to steering command System learns internal representation Avoids explicit system decomposition Lane marking, path planning, control

Efficiency:

Optimized for maximal overall performance Enable smaller networks

Training and Inference

Data Collection

Training

Training and Inference

Inference

The trained network is used to generate steering commands from a single front-facing center camera.

Road Image Example

How the CNN "sees" an unpaved road. Top: subset of the camera image sent to the CNN. Bottom left: Activation of the first layer feature maps. Bottom right: Activation of the second layer feature maps. This demonstrates that the CNN learned to detect useful road features on its own, i. e., with only the human steering angle as training signal. We never explicitly trained it to detect the outlines of roads.

CNN network

Output: vehicle control

Fully-connected layer Fully-connected layer Fully-connected layer

3@66x200

CNN architecture. The network has about 27 million connections and 250 thousand parameters.

Automated Speech Recognition

Automated Speech Recognition

* Slide from V. Vanhoucke, ICML 2013 Keynote

End-To-End DNN

Idealized Framework

DNN Inspection & Introspection

Annotated dataflow graph

Capsule Networks

Sabour, Sara, Nicholas Frosst, and Geoffrey E. Hinton. "Dynamic routing between capsules." *Advances in Neural Information Processing Systems*. 2017.

A capsule is a group of neurons that not only capture the likelihood but also the parameters of the specific feature.

Capsule Networks connectivity

Conjecture2

- Capsule Networks enable improved introspection
 - Tailored HW and SW stack
 - Precision
 - how many precision bits? Inter-phase data communication
 - Interconnection data flow
 - Code Generation
 - Reliability tolerance to HW failure
 - Resilience resist adversarial data

ML Application Components Data Preparation acquiring, producing, cleaning ENOUGH data to feed ML algorithm Feature Selection and Extraction identify data characteristics and behaviors of interest: what data aspects are important Productization/Deployment deploy a stable system at SCALE; deal with data variations over time (model drift: phenomena evolve & models don't)

End-to-End ML Components

-The data pipeline

clean, perhaps labeled, accessible dataset;

message queue,

storage,

preprocessing (such as normalization and vectorization)

-The choice of **algorithms and their tuning** choice of deep network topology hyper-parameter optimization

-The hardware associated with the training of algorithms;

- Visualization / actuation/ communication of results

Data Preparation Challenges

- End-to-End DNN -> handling multimodal data types
 Video, Audio, Streaming, IoT, etc...
- Handling Data Artifacts

 Data Normalization

Protocol Buffers as Canonical Data Representation Protocol Buffers Standardized data transfer format for data centers

• DER (Distinguished Encoding Rules)

Research Approach

Canonical Data Representation

 Inspect/Introspection of Trained Network

- Global Code Generation Approach
 - Partitioned/Optimized Dataflow Graph
 - Multi-pass graph rewrite
- Related Work: TVM, Dawn

Software Stack

Data Ingestion & Canonical Representation Graph Optimizer – connectivity, operator merging Tensor-Level Optimizer – memory, precision, schedule JIT Runtime

ISA

Graph Optimizer Computation

- Operator Merging
- Precision
 - Bit-width determination
 - Data Transducer
- Memory
 - Data Access
 - Data Layout
 - Reuse
- Partitioning & Scheduling

IR

Potential Reuse of

Halide, TVM, Weld, Tensorflow XLA, Intel GraphN, DLVM, Glow, DLVM

Memory Optimization Considerations

- CPU multi-level caches
- GPU local(shared) memory, L2, L3
- Protocol buffer access
- **Operators:**
 - scalar
 - vectors
 - tensors

Tailoring Optimizations

- Bit-width adaptation
- Precision determination pass
- Redundancy / Resiliency pass
- Multi-precision accumulation pass
- Phase Ordering Problem

Conclusion

Research topics:

- Full-stack: HW, SW, Application, system
- Cross-layer optimization
- Societal Applications

