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Brief BIO, Publications, Patents

PhD — Carnegie-Mellon, ECE
MSc — UNICAMP/Brazil
BSc — ITA-Brazil

Work: IBM Research, Motorola, Times N, Intel Labs, AMD Research
50 U.S. Patents Issued, 54 U.S. Patents Pending

Publications
Citations 1393 H-index 22, i10-index 39

Computer Architecture, Computer Systems, Performance Tuning
Big Data, Machine Learning

Creator /General Chair : AMAS-BT International Workshop on

Architectural/Microarchitectural Support for Binary Translation, joint with
ISCA and CGO.
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Docentes (faculty)

W Departamento de Engenharia Informatica

Cerca de 80 professores

PhDs das melhores escolas mundiais:
MIT (3 professores)
UC Berkeley (2 professores)
CMU (1 professor)
1/3 dos professores com PhDs internacionais

Reconhecimento internacional do seu trabalho:
ACM Distinguished Member
ERC Grant

2016 ACM Computing Review "21st annual list of notable items
published in computing”

Program chairs de conferéncias de topo (EuroSys, Eurographics,
etc.)

Organizacao da Lisbon Machine Learning School desde 2011



MICROARCHITECTURE and
EXASCALE

e CPU trends
* Modern Microarchitecture
 Accelerators - GPU



CPU Trends

CPU architecture trends:

* Bigger pipelines

* Increased out of order execution

* Improved speculative execution

 Wider vector operations

 Memory scatter/gather instructions
(vectored 1/0)

AMD Zen CPU

These architectural features improve performance at the cost of die space
and reduced energy efficiency

Increasing core counts enables parallel thread execution

Credit: Alan Lee, AMD Research CVP, 2017
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Fetch Four x86 instructions
Op Cache instructions

4 Integer units
Large rename space — 168 Registers

192 instructions in flight/8 wide retire

2 Load/Store units
72 Out-of-Order Loads supported

2 Floating Point units x 128 FMACs
built as 4 pipes, 2 Fadd, 2 Fmul

I-Cache 64K, 4-way

D-Cache 32K, 8-way

L2 Cache 512K, 8-way

Large shared L3 cache

2 threads per core




GPU Overview

Very high core count with highly parallel architectures

eSimplified Core architecture to reduce die space and
improve energy efficiency

eSequential code runs poorly on the GPU, although
current GPUs have better support for general purpose
compute

0. | D O 0 A

eExcellent floating point capability
AMD Hawaii GPU

eHigh throughput memory architecture

Programmable using OpenCL, C++ and other high level languages via OpenMP and
OpenACC.

GPUs are good choices for highly parallel data processing such as signal and image
processing.



CPU, GPU Comparison

Differences in GPU/CPU for Power Consumption
from "6PU Computing To Exascale and Beyond”, Bill Dally, SC10

GPU CPU

200pJ/Instruction 2nJ/Instruction

Optimized for Throughput Optimized for Latency

Explicit Management Caches
of On-chip Memory




Handling Large Data Sets at High Speed

* A conventional CPU executes one thread at a time
A multi-core CPU might execute tens of threads at a time
A GPU can process thousands of threads concurrently
(Repurpose pixel processing for general purpose processing)

Result: Huge increase in power-performance efficiency
Highly parallel algorithms (e.g., X-correlation) experience massive

acceleration

Trend: accelerators are increasingly deployed to attack more algorithms and
problems:

s 0¥,

0
selaa muas YOGS

Computational Fluid Dynamics Bioinformatics Cosmology



AMD High Performance
Computing

Research funded by U.S. Department of Energy

Technology towards Exascale

Several Programs: FastForward, FastForward?2,
DesignForward, PathForward

Total AMD Awards exceed USS40M



AAR Fast Forward 2 Node Architectures

Investigators Total Funding

* Michael Schulte (Pl - Technical lead) » Approximately $20M

"{ohn¥gahjiRiteetor) Contract Period of
Performance

DOE representatives

* Scott Atchley, ORNL
* John May, LLNL

* Sept 2014-Dec 2016

R h and Devel tin: '
esearch and Development in Proposed Exascale Node Arch|tectur

* Node Architecture, Integration and Evaluation
* Processor and SoC Design Enhancements

* Energy Utilization Techniques

* Resilience and Reliability Enhancements

* Data Movement and Processing-in-Memory

)

* Enhanced Programmability and Applications
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* Simulation and Modeling Infrastructure
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Co-Design, Technology Transfers, and Interactions
with System Integrators

* Driving Research Results into Future Products




EXASCALE SUPERCOMPUTING



Exascale Research Areas

Accelerate design and commercialization Accurate regional impact assessment of Increase efficiency and reduce cost of Design high-efficiency, low-emission
of next-generation small modular climate change. turbine wind plants sited in complex combustion engines and gas turbines
reactors. terrains,

Biofuel catalysts design; stress-resistant Cosmological probe of standard model Demystify origin of chemical elements
Crops. Accelerate and translate cancer research (5M) of particle physics: inflation, dark (> Fe); confirm LIGO gravitational wave
in RAS pathways, drug responses, and matter, and dark energy. and DUNE neutrino signatures.

treatment strategies.

credit: Exascale Computing Project, 2017



Achieving Exascale

From Giga to Exa, via Tera & Peta*

1000

8x from transistor

Relative Transistor Performance

Tera 7~ 128x from parallelism
T j.'
10
G y 4 32x from transistor
'9a 32x from parallelism
1 =

1986 1991 1996 2001 2006 2011 2016

Performance from parallelism

Credit: Paul Messina, Exascale Computing Project, 2017

100 T

1.5x from transistor
670x from parallelism

2021 *S. Borkar, Intel



Exascale System Specification

Exascale System Goal
Delivery Date 2019-2020
Performance 1000 PF LINPACK and 300 PF on to-

be-specified applications

Power Consumption™ 20 MW
MTBAI** 6 days
Memory including NVRAM 128 PB
Node Memory Bandwidth 4 TB/s
Node Interconnect Bandwidth 400 GB/s

*Power consumption includes only power to the compute system, not associated

storage or cooling systems.

**The mean tume to application failure requiring anv user or administrator action
must be greater than 24 hours, and the asymptotic target 1s improvement to 6 days
over time. The system overhead to handle automatic fault recovery must not reduce
application etficiency by more than half.

PF = petaflop/s, MW = megawatts, PB = petabytes, TB/s = terabytes per second,
GB/s = gigabytes per second, NVRAM = non-volatile memory.




Computing Devices

Ease of Application Flexibility | Floating Point Energy Efficiency
Programmability Capability

Easy High 100’s GFLOPS range Low
GPU Moderate High 10’s TFLOPS range Low
DSP Moderate High 10’s GFLOPS Moderate to High
FPGA Difficult Moderate Algorithm Specific Moderate
ASIC Very difficult Low Algorithm Specific High

 CPU, GPU, and DSP architectures are closest, differing on parallelism and control.
What differentiates them is how the microarchitectures are combined with each
other (parallelism and control) and with memory and I/O.

* FPGAs provide a semi-flexible solution where digital logic design is used to
implement algorithms and I/O for a specific task. Modern FPGAs include a number of
hardware multiply units that make them suitable for algorithms such as the FFT.

* ASICs are custom chips that can achieve better performance than FPGAs. They are
suitable for well defined algorithms.

Credit: Alan Lee, AMD Research SVP, 2017



Technology Trends

 Heterogeneous computing and accelerators
* Increased on-chip integration (e.g. CPU + GPU on the same die)

* Increased on-package integration using multiple chips on an interposer.
E.g: CPU + NIC + memory

* 3D or Die-stacking: Stacked memory chips and logic chips (as seen in
recent GPU products such as AMD’s Fiji)

* Higher core counts

* New memory technologies (e.g. NVRAM, stacked memory)
* Faster interconnects

* New programming paradigms: C++ AMP, OpenMP and OpenACC
standards
Credit: AMD Research, 2017



U.S.Dept of Energy Exascale Project

* 10 year project — two Exascale Computers by
2023

* National Strategic Computing Initiative (NSCI)
launched by the Obama Administration in July
2015
— FastForward
— FastForward?2
— DesignForward
— PathForward



U.S.Dept of Energy Exascale Project

e FastForward

— initiate partnerships with multiple companies to
accelerate the R&D of critical component
technologies needed for extreme-scale computing

— NVIDIA, IBM, Intel, AMD,WhamCloud
e FastForward?2

— focuses on two areas: Node Architecture and
Memory Technology

* DesignForward
* PathForward



U.S.Department of Energy Exascale Program

RFP Awardees Total (USS million)
FastForward 2011 NVIDIA AMD Intel IBM WhamCloud 62.0
DesignForward 2013 AMD Cray IBM Intel NVIDIA 25.4
FastForward?2 NVIDIA AMD Intel IBM 100.0
DesignForward2 2014 AMD, Cray, IBM 20.0

PathForward 2016 AMD, Cray, IBM, HP, Intel, Nvidia 258.0



" (") On the Path to the Natic X

C | & Secure | https://exascaleproject.org/path-nations-first-exascale-supercomputers-pathforward/

2% Apps < GPU Grant Program | l';.»' Kaldi: Kaldi Tools && Eil Assessoria Migrat: & LxData - OneDrive 8 Hololens Dev 101: - & Digital Living Spaces €3 Angloinfo - Everythii 5 caiano

ON THE PATH TO THE NHTION'S FIRST
EXASLCAHLE SUPERCOMPUTERS:
PHTHFORWHRRD

06/15/17

Department of Energy Awards Six Research Contracts Totaling $258 Million to
Accelerate U.S. Supercomputing Technology

June 15, 2016

WASHINGTON, D.C. - Today U.S. Secretary of Energy Rick Perry announced that six leading U.5. technology companies will receive funding from the
Department of Energy's Exascale Computing Project (ECP) as part of its new PathForward program, accelerating the research necessary to deploy the
nation's first exascale supercomputers.

The awardees will receive funding for research and development to maximize the energy efficiency and overall performance of future large-scale
supercomputers, which are critical for U.S, leadership in areas such as national security, manufacturing, industrial competitiveness, and energy and
earth sciences, The $258 million in funding will be allocated over a three-year contract period, with companies providing additional funding amounting
to at least 40 percent of their total project cost, bringing the total investment to at least $430 million.

“Continued U.5. leadership in high performance computing is essential to our security, prosperity, and economic competitiveness as a nation,” said
secretary Perry.

“These awards will enable leading U.S. technology firms to marshal their formidable skills, expertise, and resources in the global
race for the next stage in supercomputing—exascale-capable systems.”

“The PathForward program is critical to the ECP's co-design process, which brings together expertise from diverse sources to
address the four key challenges: parallelism, memory and storage, reliability and energy consumption,” ECP Director Paul Messina
said. "The work fundad by PathForward will include development of innovative memory architectures, higher-speed interconnects,
improved reliability systems, and approaches for increasing computing power without prohibitive increases in energy demand. It is essential that
private industry play a role in this work going forward: advancas in computer hardware and architecture will contribute to meeting all four challenges.”

The following U.S. technology companies are the award recipients:

* Advanced Micro Devices (AMD)

s Cray Inc. (CRAY)

» Hewlett Packard Enterprise (HPE)

* |nternational Business Machines (IBM)
* Intel Corp. (Intel)

o NVIDIA Corp. (NVIDIA)



Exascale initiatives are advancing the
computational power of

supercomputers

 NSCI (National Strategic Computing Initiative)
announced by President Obama in June 2015

« Exascale Computing Project ECP started by DOE in
the US

« Similar initiatives in Europe, Japan, and China
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The Ministry of Education, Culture, Sports, Science and Technology

China planning new supercomputer
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Al Source: Xinhua 2016-01-22 198:26:01 HEE =S
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(EMESTTED ST Appﬁcﬁ?;;u[i;:ﬂopmnt TIANJIN, Jan. 22 (Xinhua) -- China is planning a supercomputer 1,000 times more
== powerful than its groundbreaking Tianhe-1A as it faces rising demand for next-generation
3 B computing.
Co-design (B 9B
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Meng Xiangfei, head of the applications department of the National Supercomputer
Supercomputer Development P— Center, said on Friday that the center will release a prototype in 2017 or 2018 of an
[ Post K computer] (JEEEE) "exascale” computer — one capable of at least a billion billion calculations per second

Exploratory Challenges
{RIKEN AICS) {4 challenges )

Exascale computing is considered the next frontier in the development of
supercomputers.




MACHINE LEARNING

* “Program From Data”
e Software 2.0
e Key Algorithms — Deep Neural Networks



DEFINITION OF MACHINE
LEARNING

* Simple Definition: “Algorithms that Learn

Traditional Programming Machine Learning
Data Data
Output Program

Program Output
In Trafcjltlonaoll Prc;grimmlrgé d H#Than In Machine Learning, the system autonomously
exlpi.r er;]c_o efsd Its no(;/vde geg te ; learns the relationship of data and the desired
refationsnip Ot dta ahd esn:[ed c;utpu output, creating classification rules (inference) to
d5 a program to process Input data to provide the desired output from similar input

generate the desired output

A Machine Learning: A system capable of the autonomous acquisition and integration of knowledge

Challenge: Black Box -> Hardware



Software 1.0 vs Software 2.0
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® Written in code (C++, ...) m Written in the weights of a neural

= Requires domain expertise network model by optimization

1. Decompose the problem
2. Design algorithms

3. Compose into a system AfaFE] KaTpatHy

Scaled ML 2018 talk

ISCA 2017 Keynote — Kunle Olukotun



Training Data: The New Input to Software 2.0

et} {var bea{d);this.activate(b.closest("117), ), LS. aCLIVELELY
e e 5. s elatedTarget e [G1)]) 1} . rototype .activate=1
» Jactive”) removeclass( "active”).end(). Find( ‘[data-toggle="tab"]").attr(
fa-eupanded™, 18), h?(b[8]. of Fsetitidth, b, addClass( “in")) : b. removeClass (" fade"”
}.Find|" [dots-topgle-"tab"]" ). attr{ "aria-expanded”, 18], ehle( ) Jvar g=d.Find
-”L'i":‘"d:’ ':“'E"—IWJIIJIFW?E—UHP "psTransitionEnd”, £} .om
AT sa. . tad;a. o, badeb, 2. fi to.  imstructors |2 2. tab. noConflict=Ffuney
shen"} a4 " i unet
Nia(document).on( “click.bs.ta dsta-ani s 48 i-toggle-"tzh"]" e}, on °

i Strict” s functfon bib){return + =ch
o | F—— Tufict
rpest bidafh]())) fear crr'l.nn_-':-.-.{b,dj{ I:.:.:'
,:!:ﬁ':lj.l:j'f';!ll;!qﬂum,?.- ! :
et Bl roRdO Featanyt 1 sit e :
; '.'.:‘I.:::Ju'l“;.h{‘ 1, this, . *f,:F’mxyf,:

+C.RES

‘rl'-"r"‘ }{'rJ:' dnﬂ{.‘h is } yo=d. dat
5-options

* Input: Training data

* Compiled to: Machine instructions * Compiled to: Learned parameters

https://medium.com/@karpathy/

ISCA 2017 Keynote — Kunle Olukotun



KEY MACHINE LEARNING ALGORITHMS

* Classes of Machine Learning Algorithms:

— Statistically-inspired algorithms: Bayesian Networks,
Logistic Regression, Decision Trees, etc.

— Deep Neural Networks(DNN)

* rapidly becoming the preferred algorithm, currently
provide the best solutions for image/speech/natural
language processing

* Biologically-inspired: simulated neurons

* DNNSs are a good match for heterogeneous (GPU, FPGA)
acceleration because the mathematical operation to

compute the effects of weighted inputs for multiple
neurons is a matrix-vector multiplication.



DEEP NEURAL NETWORKS

* rapidly becoming the preferred algorithm, currently the best
solutions for image/speech/natural language processing

* Biologically-inspired: simulated neurons

* Good match for AMD GPU acceleration because the
mathematical operation to compute the effects of weighted
inputs for multiple neurons is a matrix-vector multiplication.

input 0

%‘ output
inputl,,,——”z* P
\Ne'\%m

A Simulated Neuron: A biologically inspired
algorithm whereby a number of input values
are provided to a simulated neuron, which
computes an output based on a weighted
combination of the input values

Inputs Outputs

An Example Deep Neural
Network(DNN): A multi-layered
sequence of simulated neurons



EXAMPLE: DEEP NEURAL NETWORK
CLASSIFYING AN IMAGE

Inputs Outputs

Probability(“bird”)=82%

Image(pixel values)
are input to input

neurons c . edtod Final Result: probability
roups or neurons are trained to detect Of input image being 3

ific features in i ions. i i
SPeCITIC Teatures In Image regions given entlty

Subsequent layers reacts to
combinations of features that compose
the image.



INFERENCE

« Is the problem of identifying to which
categories a new observation belongs

— Examples - Sort and Classify input into discrete categories
« Create photo categories from input set (exemplified on previous slide)

Email: {message} classified as one of { spam, NOT-spam}

Diagnosis: { gender, symptoms} used to determine disease

— Uses Trained deep networks for RECOGNITION tasks
— Focus on efficient Forward computation
— Focus on Latency: Minimize end-do-end response time: smaller mini-batches

Inputs Outputs e 1 .,
bird”, “ face”, ...

e~

a number of
images

Inference: images are presented to the network to determine what class of image it is




TRAINING

« or LEARNING is the computationally-demandinc
task of determining the parameters of a neural
network
- Has both Forward, Backward propagation phases
- State of the Art is GPU Acceleration
- Focus on High Throughput

Images are presented to the network to determine class;  erroneous
outputs are propagated backwards correcting network parameters to
achieve high accuracy:

Forward
}Mfacen
In 1 Image labels
@ = =? bird H
detect error

Input a Large
number of
images




MACHINE LEARNING:
APPLICATION FRAMEWORK across

MULTIPLE REGIONAL SCOPES

data travel distance ™=

Point of Data
Capture

=

Compute reaction nearby the
place data is captured, using
locally stored knowledge

Examples - Car warning system
using front camera image;
Factory Sensor Input

Local/Regional
Data Center

h_;af; i

Compute reaction using
aggregate data from a
few, logically neighboring
compute sites

Example: Traffic
management and
scheduling of a city-wide
fleet

Scale-Out Data
Center

Py .

e £
Compute reaction using
knowledge from a
worldwide and long
term memory

Example: Netflix movie
recommendation
engine



Accelerators for ML

£ XIUNX
CPU GPU FPGA TPU What next?
B Threads B Massive threads H LUTs ® MM unit
H SIMD " SIMD B DSP B BRAM
B HBM B BRAM

ISCA 2017 Keynote — Kunle Olukotun



End To End Machine Learning

Self Driving Car Example:
Map camera pixels to steering command
System learns internal representation

Avoids explicit system decomposition
Lane marking, path planning, control

Efficiency:
Optimized for maximal overall
performance
Enable smaller networks




Training and Inference

Data Collection

Training

(e ) (Eomnes) (Fiones

Steering wheel angle
(via CAN bus)

£l

External solid-state
drive for data storage

NVIDLA DRIVE™ PX

Figure 1: High-level view of the data collection system.

Recorded
steering
whesl angle Adjust for shift Desired steening command
and rotation

| Left camera
| =%
e |—— n
(Comescamere}—| U [ o
| Right camera }—I *
Badk propagation
weight adjustment

Training the neural network.



Training and Inference

Inference

Network
computed
| steering

- command _ | Drive by wire
[Centm camera } >{ CNN ‘ : I acE

The trained nebwerk = used ko generate steering commands from a single front-facing center camera.




Road Image Example

How the CNN “sees” an unpaved road. Top: subset of the camera image sent to the CNN.
Bottom left: Activation of the first layer feature maps. Bottom right: Activation of the second laver
feature maps. This demonstrates that the CNN learned to detect useful road features on its own, i. e.,
with only the human steering angle as training signal. We never explicitly trained it to detect the
outlines of roads.
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CNN network
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CMM architecture.  The network has about 27 million connections and 230 thouwsand

parameters.




Automated Speech Recognition

Language Model

Meaning
Decision Trees
; 4
Feature Extraction X

N

\_/Acoustic Model

Lexicon

* Slide from V. Vanhoucke, ICML 2013 Keynote




Automated Speech
Recognition




End-To-End DNN

 Idealized Framework

Data

Deep
Neural
Network

Output




Data

DNN Inspection &
Introspection

Deep
Neural
Network

B1 -parallel
B2 —latency sensitive

B3 — allows low
precision

Output




End-to-End ML Challenges

Chihuahua or Muffin?

-Network Inspection

-Who does what?

-Adversarial Input .‘ ' m
’ _A



Capsule Networks

Sabour, Sara, Nicholas Frosst, and Geoffrey E. Hinton. "Dynamic routing
between capsules." Advances in Neural Information Processing Systems. 2017.

A capsule is a group of neurons that not only capture the
likelihood but also the parameters of the specific feature.

O (.10, 4)
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Capsule Networks
connectivity

Class Caps

Primary Caps
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Conjecture

 End-To-End DNN may lead to globally
optimized results
— Tailored code generator optimizing

across layers may be better than hand-
tuned generic libraries

— Trained Network: tailored interconnect




Conjecture?2

« Capsule Networks enable improved
Introspection

— Tailored HW and SW stack

* Precision —

— how many precision bits? Inter-phase data
communication

e Interconnection - data flow

« Code Generation
« Reliability — tolerance to HW failure
* Resilience - resist adversarial data




ML Application Components

 Data Preparation

acquiring, producing, cleaning
ENOUGH data to feed ML algorithm

« Feature Selection and Extraction

identify data characteristics and behaviors
of interest: what key data aspects

* Productization/Deployment
deploy a stable system at SCALE;

deal with data variations over time
model drift: phenomena evolve & models dont

\\\\\\\\\
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End-to-End ML Components

-The data pipeline
clean, perhaps labeled, accessible dataset;
message queue,
storage,
preprocessing (such as normalization and vectorization)

-The choice of algorithms and their tuning

choice of deep network topology
hyper-parameter optimization

-The hardware associated with the training of algorithms;

- Visualization / actuation/ communication of results




Data Preparation Challenges

« End-to-End DNN -> handling multi-
modal data types

—Video, Audio, Streaming, IoT, etc...

« Handling Data Artifacts
— Data Normalization




Protocol Buffers as Canonical

Data Representation

 Protocol Buffers

— Standardized data transfer format for
data centers

« DER (Distinguished Encoding Rules)




Research Approach

« Canonical Data Representation

« Inspect/Introspection of Trained
Network

* Global Code Generation Approach

« Related Work: TVM, Dawn




Software Stack

Data Ingestion & Canonical Representation
Graph Optimizer — connectivity, operator merging

Tensor-Level Optimizer — memory, precision, schedule
JIT Runtime

SA
* Related: TVM, DAWN, DLVM




Graph Optimizer
« Computation
— Operator Merging

— Precision
e Bit-width determination
« Data Transducer

« Memory
— Data Access
— Data Layout
— Reuse

 Partitioning & Scheduling




IR

 Potential Reuse

« Halide, TVM, Weld, Tensorflow XLA,
Intel GraphN, DLVM, Glow, DLVM




Conclusion

» Research topics:
— Full-stack: HW, SW, Application, system
— Cross-layer optimization
— Societal Applications




