
ComP-Net: Command Processor Networking for
Eficient Intra-kernel Communications on GPUs

Michael LeBeane
The University of Texas at Austin
Advanced Micro Devices, Inc.

mlebeane@utexas.edu

Khaled Hamidouche
Advanced Micro Devices, Inc.
Khaled.Hamidouche@amd.com

Brad Benton
Advanced Micro Devices, Inc.

Brad.Benton@amd.com

Mauricio Breternitz
INESC-ID & IST

University of Lisbon
mbreternitz.ist@gmail.com

Steven K. Reinhardt
Microsoft Corporation
stever@microsoft.com

Lizy K. John
The University of Texas at Austin

ljohn@ece.utexas.edu

ABSTRACT

Current state-of-the-art in GPU networking advocates a host-
centric model that reduces performance and increases code
complexity. Recently, researchers have explored several tech-
niques for networking within a GPU kernel itself. These
approaches, however, sufer from high latency, waste energy
on the host, and are not scalable with larger/more GPUs
on a node. In this work, we introduce Command Processor
Networking (ComP-Net), which leverages the availability
of scalar cores integrated on the GPU itself to provide high-
performance intra-kernel networking. ComP-Net enables
eicient synchronization between the Command Proces-
sors and Compute Units on the GPU through a line locking
scheme implemented in the GPU’s shared last-level cache.
We illustrate that ComP-Net can improve application per-
formance by up to 20% and provide up to 50% reduction in
energy consumption vs. competing networking techniques
across a Jacobi stencil, allreduce collective, and machine
learning applications.

CCS CONCEPTS

· Computer systems organization → Heterogeneous

(hybrid) systems;

KEYWORDS

GPUs, Programming Models, RDMA networks

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for proit or commercial advantage and that copies bear

this notice and the full citation on the irst page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior speciic permission and/or a fee. Request

permissions from permissions@acm.org.

PACT ’18, November 1–4, 2018, Limassol, Cyprus

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5986-3/18/11. . . $15.00

https://doi.org/10.1145/3243176.3243179

ACM Reference Format:

Michael LeBeane, Khaled Hamidouche, Brad Benton, Mauricio Bre-

ternitz, Steven K. Reinhardt, and Lizy K. John. 2018. ComP-Net:

Command Processor Networking for Eicient Intra-kernel Com-

munications on GPUs. In International conference on Parallel Ar-

chitectures and Compilation Techniques (PACT ’18), November 1–

4, 2018, Limassol, Cyprus. ACM, New York, NY, USA, 13 pages.

https://doi.org/10.1145/3243176.3243179

1 INTRODUCTION

GPUs are pervasive in data centers and high-performance
computing (HPC) environments. At the time of this writing,
98 of the top 500 supercomputers leverage some form of GPU
acceleration [39]. GPU powered machines ofer extreme lev-
els of computational throughput, memory bandwidth, and en-
ergy eiciency for structured, data-parallel workloads across
a very wide class of high-performance applications [24].
To solve the largest and most diicult problems, multi-

ple GPUs are deployed across many compute nodes. These
compute nodes typically employ high-performance network
adapters to communicate with devices on remote machines.
Current industry-driven technologies such as peer-to-peer
data transfer from a GPU’s discrete memory to the NIC [21]
and direct initiation of network operations by the GPU front-
end [2, 34] have optimized both the data path and portions
of the control path to low directly from the GPU to the
network adapter.

Despite much progress in the area, traditional multi-node
GPU clusters communicate data across the network between
subsequent kernel launches. Restricting communication in
this manner forces the programmer to think about commu-
nication separately from the computation in a completely
diferent device instead of embedding network runtime calls
directly within the kernel itself. Inter-kernel networking can
also impose performance challenges when networking is
frequent compared to computation and limits the class of
algorithms that can be oloaded to a GPU. To put this into

https://doi.org/10.1145/3243176.3243179
https://doi.org/10.1145/3243176.3243179

PACT ’18, November 1–4, 2018, Limassol, Cyprus M. LeBeane et al.

CPUGPU NIC

Wait

Send

Send

…

Wait

Kernel

…

Kernel

Work-group

Compute

Launch

Kernel

Launch

Kernel

(a) Inter-kernel networking.

CPUGPU NIC

Wait

Send

SendWait

Fwd.

…

Kernel

…

…

Launch

Kernel

Work-group

Send

(b) Intra-kernel networking.

Figure 1: Comparison of control low for inter- and

intra-kernel GPU networking. Intra-kernel network-

ing allows for computation and communication over-

lap at work-group granularity inside a GPU kernel.

perspective, waiting for kernel tear-down/startup has been
shown to take upwards of 10µs [19]. This is an order of mag-
nitude greater than modern network latencies, which hover
around 0.7µs at the time of this writing [22].

Recently, a number of researchers have explored initiating
GPU communications from within a kernel itself [10, 12, 16ś
19, 27, 28, 31, 32, 37], in a similar manner that one would
initiate communication on the host through a network run-
time like the Message Passing Interface (MPI). While some
researchers have focused on running a full network stack
on the GPU, most practical solutions involve using helper
threads on the host to send messages on behalf of the GPU.
Figure 1 compares and contrasts these intra-kernel net-

working techniques with traditional inter-kernel networking.
Intra-kernel networking approaches utilize a level of indirec-
tion where the GPU communicates with the host through
producer/consumer queues that exist either in GPU or host
memory. The host CPU is responsible for servicing requests
from these queues and placing them into traditional network-
ing queues attached to a NIC. Requests that complete from
the NIC are forwarded back to the GPU through an opposite
sequence of steps. This programming model removes the
high price of ending a kernel strictly for communication and
allows for communication and computation to overlap at the
level of a GPU work-group.
While host CPU service threads are an obvious way to

enable intra-kernel networking, there are a number of criti-
cal limitations to this approach. Helper-thread-based, intra-
kernel networking requires a number of long latency IO

NIC

…Host Queues
Memory

CUs

CPUs

GPU

Host
PCIe

Network Queues

PCIe

Memory

PCIe

(a) Inter-kernel networking through host threads.

PCIe
Host

PCIe

L2 Cache
Host Queues

Memory

Network Queues

CUs CPs

PCIe

NIC

GPU

(b) Intra-kernel networking through ComP-Net.

Figure 2: Comparison of ComP-Net to traditional

intra-kernel networking schemes.

operations before a network operation even begins. In fact,
synchronization between a CPU and discrete GPU may not
even be possible from within a kernel depending on the
supported memory consistency model of the platform. Ad-
ditionally, previously proposed GPU networking solutions
require a prohibitive number of host threads to scale beyond
a single GPU. As the number of compute units on a GPU (or
the number of GPUs in a node) continues to grow, much of
the host CPUs’ cycles will be spent servicing network opera-
tions. Finally, requiring the host to constantly poll on remote
GPU memory consumes a non-trivial amount of energy.
In this work, we improve the performance and energy

consumption of GPU-initiated communication using a little-
known feature of modern GPUs: embedded, programmable
microprocessors that are typically referred to as Command

Processors (CPs). These processors exist on the GPU device it-
self and are utilized to perform the serial tasks involved with
launching and tearing down a GPU kernel [4, 30]. However,
in the presence of intra-kernel networking, programmers
are encouraged to use larger (less) kernels, as they no longer
need to break down kernels across network communication
points. This leaves the Command Processors otherwise idle
and available to assist with GPU networking.
Our solution, called Command Processor Networking

(ComP-Net), moves the network service thread from the
host CPU to the GPU-resident CP. Figure 2 compares ComP-
Net to traditional intra-kernel networking schemes where

Command Processor Networking PACT ’18, November 1–4, 2018, Limassol, Cyprus

Local Data Share

L2 Cache

L1 Cache

CPU Core

GPU Memory

Compute Unit Command

Processor

L1 Cache

SIMD SIMD SIMD SIMD

Figure 3: Graphics Core Next (GCN) GPU architec-

ture. [4].

the network service threads reside on the host. In ComP-
Net, GPU work-groups submit networking operations to
the CP through the GPU’s shared cache hierarchy on per-
work-group command queues. By hosting the networking
runtime on the CP vs. the host CPU, we achieve a reduction
in latency for network operations, an increase in scalability
inmulti-GPU systems, and a decrease in energy consumption
associated with the network service thread.
This paper describes the following contributions of the

ComP-Net system:

• We describe the runtime architecture and programming
interface of ComP-Net.

• We discuss practical challenges related to the relaxed mem-
ory consistency model on the CP and the GPU.

• We discuss ways to mitigate perform problems when shar-
ing data between these two devices by applying some
simple architectural enhancements to the GPU’s L2 cache.

• We show that ComP-Net can improve application per-
formance by 20% and reduce energy consumption of the
network service thread by up to 50% vs. other intra-kernel
networking designs on a 2D Jacobi stencil, allreduce col-
lectives, and machine learning workloads.

2 BACKGROUND

This section describes the technology upon which ComP-Net
is built.
GPUCompute Architecture: Figure 3 illustrates the rel-

evant components of a compute optimized GPU. GPUs are
comprised of a number of Compute Units (CUs), each of
which are comprised of a collection of Single Instruction,
Multiple Data (SIMD) units. Each CU is connected to a private
L1 cache and shared L2 cache, which are maintained by ex-
plicit cache management instructions. Groups of work-items
(also known as threads) are dispatched on the CUs in bundles
known as wavefronts (also known as warps). These wave-
fronts are further bundled into work-groups (also known as
thread blocks). Work-groups are guaranteed to execute on
the same CU and can therefore make use of fast scratch-pad
memory called the Local Data Share (LDS).

CommandProcessor:Of particular importance for ComP-
Net is the block known as the Command Processor (CP). The
primary responsibility of the CP is to manage the schedul-
ing, launch, and tear-down of GPU kernels by serving as an
intermediary between the host CPU and the GPU’s work-
group scheduler. In this paper, we assume a programmable
CP implemented as a general-purpose CPU with private L1
instruction and data caches. The CP is hooked up to the GPU
through a shared L2 cache, as described in the prior art [30].

GPU Memory Consistency Model: The GPU operates
under a weak memory consistency model [14]. In our system
architecture, we assume that CUs in the GPU and the CPs
have private L1 caches which are not coherent with the rest
of the system or with each other. To share data between CUs
and CPs, the programmer needs to use scoped synchroniza-
tion operations. A scope deines the level of visibility that a
synchronization command operates (e.g., local, device, and
system). In this paper, we assume that a synchronization can
either be a release operation, which ensures that all previous
memory operations have been made visible to the requested
scope, or an acquire operation, which ensures that we see
the newest data for all memory operations below the syn-
chronization point. These concepts map to ISA instructions
that perform cache maintenance operations and memory
fences in the hardware.
RDMA and OpenSHMEM: Remote Direct Memory Ac-

cess (RDMA) technology can completely avoid the target
CPU when performing network operations and are imple-
mented inmany high-performance networking protocols [15,
35]. RDMA technologies are typically used to implement one-
sided communication semantics, such as those provided by
OpenSHMEM [7]. OpenSHMEM is a Partitioned Global Ad-
dress Space (PGAS) library speciication that deines many
diferent one-sided operations, such as remote Puts andGets ,
as well as use synchronization primitives and collectives. In
this paper, we have designed ComP-Net according to the
semantics of the OpenSHMEM network programming stan-
dard.

3 MOTIVATING COMP-NET

In this section, we will dive into the limitations of existing
intra-kernel networking schemes that use threads on the
host.

3.1 High Latencies

Most currently existing intra-kernel networking schemes re-
quire communication between CPU network service threads
and a GPU’s work-groups. Unfortunately, in discrete GPU
form factors, these two devices are separated by a high la-
tency IO interconnect.

PACT ’18, November 1–4, 2018, Limassol, Cyprus M. LeBeane et al.

0

20

40

60

80

100

1 4 16 64 256 1024 4096

S
er

v
ic

e
T

im
e

(u
s)

Active Workgroups

Host Queues

GPU Queues

Network Latency

(a) Average service time of CPU/GPU queues with the queue placed

on the GPU and in host memory.

0

20

40

60

80

100

16 64 256 1024 4096

S
er

v
ic

e
T

im
e

(u
s)

Active Workgroups

1 Thread
2 Threads
4 Threads
8 Threads
Network Latency

(b) Average service time of CPU/GPU queues with varying number of

CPU helper threads.

Figure 4: Performance of intra-kernel networking us-

ing host threads

Figure 4a shows the latencies for intra-kernel communi-
cation between a host CPU and GPU, as observed by work-
groups on the GPU. This experiment uses a simple producer/-
consumer queue for communication between the CPU and
the GPU. There are two locations in which the queue can be
placed. In the irst design, the command queue is placed in
the GPU device memory. The queue is either mapped to the
CPU’s address space and accessed with loads and stores, or
it is accessed by a runtime call. Either way, the performance
is poor, especially when the CPU is required to monitor mul-
tiple queues at once, since the long latency reads block the
CPU from making forward progress.
In the second design, the command queue is placed in

host memory. The GPU maps the host memory to its address
space and does PCIe stores and atomics to synchronize.While
this approach performs better than the previous design, the
access latency is still high, on the order of 5-80µs, which is 1
or 2 orders of magnitude higher than network latencies of
0.7µs [22].
No matter where the queue is placed, latencies are high.

We are not the irst to note this restriction. Previous works
have illustrated considerable latencies that far surpasses the
latency of a network interface. For example, DCGN [37]
quotes latencies of 330µs and Gravel [31] uses a 125µs time-
out to lush pending messages. Even recent works on pow-
erful modern hardware, such as dCUDA [12], only achieve
latencies of approximately 20µs in the best case.

While high latencies may not matter much when perform-
ing bulk synchronous transfers of large data, many network
applications, even on a GPU, require more than just support
for streaming transfers. Even applications that are mostly
parallel still have frequent periods of serial behavior that
cannot be easily overlapped. Consider the popular stencil
pattern of computation, which is frequently accelerated on
GPUs. In these applications, a reduction is typically per-
formed after each relaxation phase to determine whether a
convergence criterion has been met. After a local reduction
across the GPU, each device contributes a small amount of
data, such as the calculation of residuals or synchronization
between time-steps of an iterative calculation. This step of
the algorithm resides directly on the critical path where there
is not enough parallelism for latency hiding to apply. It is
precisely these use cases that we target with ComP-Net.

3.2 Poor Scalability

When using intra-kernel networking, it is very likely that
there will be many work-groups which need to access the
network simultaneously. Figure 4b shows an implementation
of intra-kernel networking on the host that sweeps both the
number of work-groups participating in a network operation
and the number of host threads allocated to service these
requests. We can see from this graph that a large number
of host threads are required to maintain reasonable quality
of service for network operations on a single 64 CU GPU.
Requiring a large number of threads to service the GPU
limits the scalability of the design. The number of required
threads will only become more of an issue as the number of
CUs on a GPU, and the number of GPUs attached to each
CPU socket, continues to increase. Recent trends show us
that many GPUs per node should be expected in the highest
performing systems [26].
There are also second order efects associated with con-

sumingmany cores on the host. Forworkloads that could ben-
eit from simultaneous CPU compute, these helper threads
draw from resources that would otherwise be used by the ap-
plication. For workloads that only use the GPU, host threads
burn unnecessary power and prevent the host CPU from
entering a deeper sleep state.

3.3 The Case for ComP-Net

ComP-Net implements intra-kernel networking while simul-
taneously addressing all the above concerns. While using a
networking CP, latency is drastically improved. The CP/GPU
command queue is placed directly in GPU memory, which
both the CP and GPU can access without traversing an IO
bus. Additionally, the CP is located behind the GPU’s L2
cache. This means that the CP and the GPU can communi-
cate on the order of hundreds of GPU cycles if the data is

Command Processor Networking PACT ’18, November 1–4, 2018, Limassol, Cyprus

__host__ void

hostInit ()

{

// 1 Initialize ComP-Net

cpnet_handle_t* cpnet_handle;

cpnet_init (& cpnet_handle , GRID_SZ / WG_SZ);

// 2 Allocate symmetric heap memory

char* buf = cpnet_shmalloc(sizeof(char) *

GRID_SZ / WG_SZ);

// 3 Initiator/target launches kernel

if (cpnet_handle ->pe == INITIATOR) {

hipLaunchKernel(Ping , GRID_SZ ,

GRID_SZ / WG_SZ , 0, 0,

cpnet_handle , buf);

} else { /* Launch target kernel. */ }

}

(a) Initialization and host code.

__device__ void

Ping(cpnet_handle_t *cpnet_handle

char* wg_buffer)

{

// 4 Extract context from global handle

__shared__ cpnet_ctx_t cpnet_ctx;

cpnet_ctx_create(cpnet_handle , cpnet_ctx);

// 5 Each WG pings target

cpnet_shmem_char_p(cpnet_ctx ,

wg_buffer[hipBlockIdx_x],

1, TARGET);

// 6 Each WG waits for pong target

cpnet_shmem_char_wait_until(

wg_buffer[hipBlockIdx_x , 1);

cpnet_ctx_destroy(cpnet_ctx);

}

(b) Device ping to remote GPU using ComP-Net.

Figure 5: ComP-Net ping/pong example on host and device.

resident in the L2 cache. While this is still quite a bit higher
than cache-to-cache communication between threads on a
CPU, it is far less expensive than synchronizing over PCIe.
The careful reader will observe that an APU form factor

(e.g., a CPU and a GPU integrated on the same die sharing
the same memory) can also avoid expensive synchronization
over PCIe. However, APUs are currently limited to low-end
desktops and laptops since they do not have enough CUs
or memory bandwidth for high performance applications.
Additionally, APUs ix the ratio of GPU resources to CPU
resources, which signiicantly decreases lexibility when de-
ploying systems. Therefore, we feel that GPU solutions that
communicate with the CPU over a high-latency bus will
continue to dominate high performance systems, motivating
the need for ComP-Net.
Scalability is also elegantly addressed by ComP-Net. As

opposed to a regular CPU, CPs scale naturally with additional
GPUs in a system. Since CPs are a part of the GPU, adding
additional GPUs in a system allows you to gain more CPs for
network processing. Additionally, a CP is much smaller than
a core on the host, which results in signiicant savings in
power and energy. We show all these efects across several
workloads in Section 5.

4 COMP-NET ARCHITECTURE

In this section, we will discuss the device- and host-side
API, the runtime architecture, and design optimizations for
ComP-Net.

4.1 ComP-Net API

ComP-Net implements an OpenSHMEM-based API that is ex-
posed to the GPU programmer through a device side library.

Each ComP-Net operation is implemented as a work-group
collective; the runtime executes a work-group barrier af-
ter each API call. Work-groups are a natural granularity to
perform networking on a GPU. Any larger, and ComP-Net
would need to synchronize across work-groups, which is
expensive and limits the ability for work-groups to overlap.
Any smaller, and message size would most likely be too small
to saturate the network link when streaming large messages.
The CPU would then need to coalesce messages together,
which adds additional latency and ties up the CPU.

Each ComP-Net API call (put/get/collective/etc.) takes the
same arguments as a standard OpenSHMEM implementa-
tion (source/destination/length/etc.) with the addition of a
GPU-only context that provides the information needed to
communicate with the CP. These arguments are placed in
a producer/consumer queue and forwarded to the CP, the
details of which are described in Section 4.2.

The practical details of ComP-Net communication are best
described through a small example. Figure 5 illustrates a sim-
ple ping-pong benchmark between two GPUs. The example
is written using AMD’s Heterogeneous-compute Interface
for Portability (HIP) [5], which has a very similar syntax to
Nvidia’s CUDA [25]. The pong step is omitted since it is sim-
ilar to ping and ofers no additional information regarding
ComP-Net’s API. Figure 5a shows the host-facing API for
ComP-Net. First, the host initializes the ComP-Net runtime
and creates a handle for the GPU 1 . This initialization step
allocates a number of service threads on the GPU’s CPs to
handle messages and brings up a standard OpenSHMEM run-
time under the hood. In our case, we have selected Sandia
OpenSHMEM [36], due to its support for contexts and direct

PACT ’18, November 1–4, 2018, Limassol, Cyprus M. LeBeane et al.

Cache/Memory/GPU Coherence Point

Queue Entry Queue Entry Queue Entry Queue Entry…..
Read Idx Status Status Status Status

CP-Net GPU Context
Write Idx

LDS / Non Coherent Cache

Base Ptr
Read Idx Ptr

Local Read Idx
…..

0 0 1 1

CP-Net GPU Context
Base Ptr

Local Read Idx
…..

Registers /

Non Coherent Cache

4 CP-Net GPU Context
Base Ptr

Local Read Idx
…..

….

Work-Group

Registers /

Non Coherent Cache

Command Processor Thread

1b

1a

2

3
5

4

1

3
4a

2

4b

!= 0

0

++

!= 1

++

++

<=

Figure 6: Illustration of work-groups and CP network service threads communicating using ComP-Net.

implementation on top of Portals 4 [35], which is the API for
our simulation environment.
Next, the host allocates a network accessible bufer on a

symmetric heap allocated from GPU memory 2 . We modify
the symmetric heap code in Sandia OpenSHMEM to allow
allocation of memory on discrete GPU (dGPU) devices. The
details of this are beyond the scope of this work, but GPU-
side symmetric heap allocators have been explored in the
prior art [13]. Finally, a GPU kernel is launched with the
ComP-Net handle and the allocated bufer 3 .
Figure 5b illustrates the device side API from ComP-Net.

The GPU irst calls an initialization function with the host-
provided ComP-Net handle 4 . This API creates a private
communication context for each work-group. This context is
allocated in scratch-pad memory and initializes its data from
the global ComP-Net handle. The next two steps perform
standard one-sided network calls to perform a remote put
on the target 5 and wait for the corresponding ping 6 .
Each work-group performs a separate ping operation on
an independent bufer entry. The details of what happens
internally in ComP-Net are described in Section 4.2.

One important detail of ComP-Net is the use of OpenSH-
MEM contexts. Contexts were recently added to the speciica-
tion as a way to wait on a subset of the outstanding network
operations [7]. While useful for CPUs, this becomes a critical
requirement on GPUs. Work-groups should not be stalled
waiting for unrelated messages, as this signiicantly reduces
the amount of available communication and computation
overlap.
Our prototype ComP-Net implementation does contain

some programming model limitations. First, our initial im-
plementation only allows for a single symmetric heap to be
bound to a single process. Therefore, all allocated ComP-Net
symmetric heap memory is always placed on GPU memory.
This restriction is a limitation of the current OpenSHMEM

API. Second, ComP-Net can deadlock if there are circular
dependences with unscheduled work-groups on the local or
remote GPU. This is a limitation of any GPU application that
synchronizes across work-groups on the device. However,
newer APIs, such as cuLaunchCooperativeKernel [25], ensure
that GPUs are never oversubscribed. This allows forward
progress in the presence of inter-work-group synchroniza-
tion.

4.2 ComP-Net Design

This section describes the architectural design and optimiza-
tions for ComP-Net.

4.2.1 GPU/CP Communication. The CP and the GPU com-
municate through per-work-group producer/consumer queues.
However, building producer/consumer queues between the
GPU and the CP on top of a weakly coherent cache hierarchy
is diferent than on a fully coherent CPU cache hierarchy.
The memory consistency model of the GPU is described in
detail in Section 2, and we will assume the reader is familiar
with these details in this section.

Figure 6 describes the details of both the producer and
consumer side of a ComP-Net operation. In ComP-Net, each
work-group maintains a context that contains the write in-
dex, base pointer of the queue, a pointer to the read index
that is shared between the CP and work-group, and a local
copy of the read index. First, the work-group checks if the
queue is full by comparing the local read index to its private

write index 1a . If the work-group thinks that the queue is
full using its local read index, it goes ahead and refreshes its
local copy with the version in shared memory and repeats

the step 1b . This reduces accesses to global GPU memory in
the common case. Once there is space in the queue, the work-
group then ills the slot with all the information necessary
to perform a network operation (operation type, destination,
length, etc.) and enqueues a release marker to ensure that the

Command Processor Networking PACT ’18, November 1–4, 2018, Limassol, Cyprus

data is visible to the CP 2 . If the data to be sent is less than
8 bytes, it is copied directly into the queue entry to enable
the CP to inline the data. Otherwise, a pointer to the data
bufer in GPUmemory is copied. Next, the work-group sets a
status bit in the queue entry to inform the CP that the data is
ready for consumption with another device scope write with
release marker 3 , and increments its local write index to
complete the operation 4 . On a blocking call, or a quiet oper-
ation for in-light non-blocking calls, the work-group needs
to check on completion for any outstanding requests. This
is done by polling on the status bits on all requests between
the read and the write index 5 . An acquire marker needs to
be inserted after every iteration of the loop to invalidate the
non-coherent L1 cache for the work-group.

On the consumer side, the command processor also keeps
a context for each work-group. The command processor adds
its local read index to the base pointer of the queue and polls
on the status bit of the next queue entry 1 . Similarly to the
work-group side, the CP needs to enqueue an acquire marker
to invalidate its L1 cache. After the CP detects that a network
packet is available, it reads out the appropriate data and calls
into a standard OpenSHMEM implementation to perform
the operation 2 . If the operation is non-blocking, the CP
immediately marks it as complete by setting the status bit
followed by a release operation 3 , and increments the read

pointer in both its local memory 4b and on the host 4a . If
the operation is blocking, the CP translates the operation
into a nonblocking OpenSHMEM call, but does not mark the
queue entry as complete. This translation is to prevent the
CP network service thread from blocking, which would leave
it unable to service other requests from other work-groups.
After performing a predeined number of polling rounds
through all queues, the CP will complete all outstanding
network requests and mark all blocking queue entries as
complete.

4.2.2 CP Atomic Operations. Once the networking thread(s)
has received a command from the host, it forwards it to an
OpenSHMEM library. Largely, the OpenSHMEM implemen-
tation is unmodiied except for the addition of acquire/release
markers to communicate between the CP and the NIC. The
procedure is similar to GPU/CP synchronization, except the
operations are performed at system scope instead of device
scope.
However, while operating in a multi-threaded environ-

ment with multiple CPs, our OpenSHMEM library makes
heavy use of mutexes to protect shared network data struc-
tures across threads. Typically, GPUs resolve device scope
atomics at the point of device-level coherence, which, in the
case of AMD GPUs, is the L2 cache. CPUs work in an en-
tirely diferent manner. For our prototype implementation,
we assume a CP running an x86 instruction set, which uses

0

0.2

0.4

0.6

0.8

1

40/0 35/5 30/10 25/15 20/20 15/25 10/30 5/35

L2
 H

it
 R

a
te

 f
o

r
C

P

Networking Wavefronts / Streaming Wavefronts

Baseline LLC Locking

Figure 7: L2 hit rate for CP-generated accesses under

diferent GPU load conditions.

Read-Modify-Write (RMW) preixes on instructions to take
ownership of critical sections. On a standard CPU, this is
implemented by two completely diferent requests. A CPU
maintains atomicity by locking either the cache line or the
entire response path of the coherent L1 cache. On a non-
coherent GPU, this implementation will not guarantee atom-
icity. Therefore, we introduce a locking cache state to the
GPU’s L2 cache to support RMW instructions. All RMW in-
structions issued from the CP automatically bypass the L1
cache. The read cycle in the RMW locks the cache line, and
the write instruction unlocks it. This also has the side efect
of ensuring that RMWs are not only atomic with respect to
other CP threads, but also to the GPU itself.

4.2.3 Controlling Cache Thrashing in ComP-Net. To reduce
latency between the CP and the GPU, we would like ComP-
Net to leverage the shared Last-Level Cache (LLC) between
the two components. Unfortunately, our preliminary design
exploration of ComP-Net revealed a major limitation. In most
applications that fully utilize the GPU, the time data is resi-
dent in the LLC is rather low. This is mainly due to the fact
that the GPU performs a signiicant amount of streaming ac-
cesses coupled with the relatively small ratio of cache space
to the number of GPU compute threads. This fact has major
performance implications on ComP-Net. If enough wave-
fronts are performing streaming accesses to global memory,
the data shared between the CP and the GPU through the
LLC would be evicted. This forces the CP and the GPU to
communicate through relatively slower GPU memory.
To illustrate this point, Figure 7 shows an experiment

where the ratio of networking work-groups to streaming
work-groups are sweeped. For the purposes of this experi-
ment, we only use a single CU on the GPU and reduce the
size of the L2 cache accordingly. L2 hit rates are reported only
from accesses that are generated by the CP. The experiment
shows that, in the absence of streaming wavefronts, the L2
hit rate for the CP is relatively high, indicating that the CP
and the GPU are sharing data through the L2 cache success-
fully. However, as successively more streaming wavefronts
are added, the CP L2 hit rate plummets to almost zero.

PACT ’18, November 1–4, 2018, Limassol, Cyprus M. LeBeane et al.

There are many techniques that could be used to solve
the above issue. One technique would be to add a dedicated
low-latency communication channel for the GPU to signal
the CP. However, even simple mailbox-based designs would
require signiicant amount of hardware modiication for a
narrow use case. Fortunately, the same technique we use
for implementing CPU mutexes can be extended to prevent
eviction of control plane data from the LLC. We extend the
GPU ISA to allow a locked store operation that puts a cache
line in the same lock state as a CPU-side RMW operation.
This data is only unlocked when it has been accessed by the
CP. Since the control plane data is small, and the CP will
most likely access the data quickly, the total number of cache
lines and the amount of time that a cache line is locked is
very small (on the order of 800ns - 1µs).

Using this modiication, one inal experiment is performed
and labeled ‘LLC Locking’ in Figure 7. LLC locking signii-
cantly improves the hit rate for networkingwork-groups that
share an L2 cache with streaming work-groups. However,
while the CP hit rate no longer plummets in the presence
of streaming work-groups, it is still reduced by 20% in the
worst case from the baseline with no streaming interference.
This reduction is due to the fact that only data shared by the
GPU and the CPU is locked. Data that is used solely by the
CP that does not it in the CPs relatively small L1 cache is
spilled out to the L2 and efected by thrashing behavior. This
indicates that there are still performance optimizations to be
gained by drawing on more sophisticated cache partitioning
or locking schemes from the literature. A deeper exploration
of this interaction is left as future work.

5 EVALUATION

In this section, we evaluate ComP-Net performance and en-
ergy consumption on a number of diferent workloads.

5.1 Experimental Setup

We evaluate ComP-Net using the open-source gem5 simula-
tor [8] including the AMD public GPU compute model [3]
based on AMD GCN architecture [4]. For CPU/CP power
numbers, we feed the gem5 output statistics into McPAT [20].
We omit GPU power analysis because we expect it to be sim-
ilar across all designs.
Table 1 shows the speciic coniguration for the major

components of our infrastructure. We conigure our system
as a compute node containing a CPU, GPU, CP, and NIC. The
CP itself is conigured according to the speciications listed
in Orr et al [30].

For our experiments, each ComP-Net producer/consumer
queue was 64 entries of 64B each for all simultaneously
executing work-groups. All proposed designs have the NIC
access the queues through PCIe, whether they reside on CPU

Table 1: Baseline simulation coniguration.

CPU and Memory Coniguration

Type 8 Wide OOO, 16 cores @ 4GHz
I, D-Cache 64K, 2-way, 2 cycles
L2-Cache 2MB, 8-way, 8 cycles
L3-Cache 16MB, 16-way, 20 cycles
DRAM DDR4, 8 Channels, 2400MHz

GPU Coniguration

Type AMD GCN3 @1.5GHz
CU Conig 12 CUs with 4 SIMD-16 engines
Wavefronts 40 Waves per SIMD (64 lanes)
V-Cache 16kB, 16-way, 12 cycles, per CU
K-Cache 16kB, 8-way, 12 cycles, per 4 CUs
I-Cache 32kB, 8-way, 12 cycles, per 4 CUs
L2-Cache 1MB, 8 banks, 16-way, 150 cycles

CP Coniguration

Type 2 Wide OOO, 2 cores @ 2GHz
D-Cache 32kB, 8-way, 4 cycles
I-Cache 16kB, 8-way, 4 cycles
L2-Cache Shared with GPU

Network Coniguration

Speed 100ns / 100Gbps
Topology Star

or dGPU memory. The memory bandwidth consumed by the
GPU network queues is minimal. Each network operation
requires a 64B command packet, which is small compared
to the size of the payload itself and any other data the GPU
application may be accessing concurrently.

In our experiments, we compare across ive diferent imple-
mentations of GPU networking. Here we describe all designs
in detail:
CPU: Standard node with just a CPU and a NIC. OpenMP

is used for thread-level parallelism, and MPI is used for multi-
node communication.
Inter-Kernel: Traditional GPU networking node repre-

sentative of technologies such as GPUDirect RDMA [21].
Kernels are launched by the host to perform computation,
and all networking is routed through MPI at kernel bound-
aries.
APU: Intra-kernel networking by placing the network

thread on the CPU of an APU. The GPU can communicate
through host memory and is coherent through a directory-
based protocol. This is representative of the Gravel intra-
kernel networking implementation for APUs, but without
the coalescing [31].
dGPU: Intra-kernel networking by placing the network

thread on the CPU of a host machine in a standard of the
shelf dGPU-enabled system. The CPU andGPU communicate
through a non-coherent PCIe bus model. This is representa-
tive of most previous works that have attempted intra-kernel

Command Processor Networking PACT ’18, November 1–4, 2018, Limassol, Cyprus

1

2

4

8

16

32

64

128

R
em

o
te

 G
et

 T
im

e

O
b
se

rv
ed

 f
ro

m
 G

P
U

 (
µ

s)

Network Payload Size (Bytes)

ComP-Net dGPU APU

1B 32B 1KB 32KB 1MB

(a) Sweep of payload size for a single WG

and network service thread.

0

20

40

60

80

100

0 2 4 6 8 10

R
em

o
te

 G
et

 T
im

e

O
b

se
rv

ed
 f

ro
m

 G
P

U
 (

µ
s)

Number of Network Service Threads

ComP-Net dGPU APU

(b) Sweep of threads for 1 Byte transfers

with 480 WGs.

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10

E
n

er
g

y
 C

o
n

su
m

ed
 b

y

N
et

w
o

rk
 T

h
re

ad
s

Number of Network Service Threads

ComP-Net dGPU APU

(c) Sweep of CPU energy consumption for 1

Byte transfers with 480 WGs.

Figure 8: Microbenchmarks of ComP-Net vs other intra-kernel networking baselines.

networking using helper threads on the host [12, 16, 37].
dGPU also serves as the baseline for all results that report
normalized energy consumption or speedups.
ComP-Net: Intra-kernel networking using ComP-Net.

The network thread is placed on the CP. The CP and GPU
communicate through a shared L2 cache on the GPU.

5.1.1 A note on APU vs. ComP-Net. We wish to address
the APU vs. ComP-Net results up front, since they may be
surprising to some readers. Although ComP-Net is more
energy eicient, for most of our results, we notice that APU
and ComP-Net have very similar performance. Since neither
communicate over PCIe, this result implies that the gains in
synchronizing through the GPU’s L2 cache (in ComP-Net)
are ofset by the relative decrease in performance of a CP vs.
CPU for running the network stack itself.

We do not believe that this diminishes the value of ComP-
Net. Although we include APU for completeness, most GPU
compute deployments employ discrete GPUs, since APU-
based designs do not ofer enough performance for compute
applications. Additionally, APUs ix the ratio of GPU re-
sources to CPU resources, which signiicantly decreases the
lexibility when designing systems. With this in mind, we
feel that the correct comparison point for ComP-Net is the
other discrete GPU baselines (either Inter-Kernel or dGPU).

5.2 Microbenchmarks

In this section we describe the performance of ComP-Net and
competing designs in a number of controlled microbench-
marks. For this section, we will compare against the three
intra-kernel networking designs (i.e., dGPU, ComP-Net, and
APU).

Figure 8a shows the latency of a single work-group per-
forming remoteGet network operations of varying payload
sizes across diferent intra-kernel networking designs. dGPU
based designs incur over twice the latency of both ComP-Net
and APU designs. As the payload size increases, network

bandwidth becomes the ultimate determining factor, and all
three intra-kernel networking designs perform similarly.

Figure 8b shows the performance of the three intra-kernel
networking schemes when fully loading the GPU with net-
work requests. In this example, we schedule 480 simultane-
ous work-groups of 64 threads each, which will fully saturate
our 12 CU system. We then sweep the number of network
service threads. Both ComP-Net and APU perform better
than dGPU. The dGPU design performs particularly poorly
when there are multiple work-groups, since service threads
must poll over PCIe.

Figure 8c shows the energy consumption of the previous
multi-threaded experiment. For this and all subsequent en-
ergy studies, we focus just on the energy consumed by the
network service thread(s). We observe that ComP-Net ofers
signiicant energy savings over both APU and dGPU. ComP-
Net consumes a third of the energy of dGPU, and half the
energy of APU.

5.3 Jacobi 2D Stencil

This section evaluates the performance of ComP-Net over a
Jacobi relaxation problem. In Jacobi, a series of operations are
performed on a local data set, followed by a halo exchange of
neighboring data. In our example, a two-dimensional stencil
is split in one dimension over all participating nodes. The
algorithm follows three main phases. First, the next value
of the local stencil is calculated (either on the GPU or the
host). Each element in the stencil updates it’s value based on
the values of each of its 4 neighbors. Next, the halo region is
exchanged with a node’s adjacent peers. Finally, a residual
is reduced over the stencil to determine whether to continue
the relaxation.
In the intra-kernel version the host is no longer needed

beyond data preparation. Since we can now perform network
transfers from within a kernel, the main relaxation loop can
be moved onto the GPU. Additionally, work-groups that
are performing a halo exchange on the edge of the stencil

PACT ’18, November 1–4, 2018, Limassol, Cyprus M. LeBeane et al.

0.8

0.9

1

1.1

1.2

1.3

16 64 256 1024

R
el

at
iv

e
S

p
ee

d
u

p

Per-Node Problem Size (N x N Grid)

ComP-Net dGPU APU

Inter-Kernel CPU

1 2 3

Figure 9: Performance of diferent networking tech-

niques on various stencil sizes.

can automatically overlap with work-groups on the interior.
Without intra-kernel networking, this overlap would need
to performed using an exterior and interior kernel.
Figure 9 illustrates the results of the Jacobi relaxation on

8 nodes across all of our experimental conigurations. The
results are presented as speedup to the dGPU baseline and
represent a single iteration of Jacobi, and the x-axis sweeps
the total number of elements in the stencil per node. The
igure shows three regions of interest. In Region 1 , the CPU
performs best. This is because the problem size is much
smaller than can be accelerated on the GPU. In Region 2
GPUs start to become advantageous. In this design, ComP-
Net and APUs perform better than dGPU and intra-kernel by
10-20%. In Region 3 , all the GPU versions start performing
similarly, since the problem size is large enough that intra-
kernel networking latencies are no longer the bottleneck.

5.4 Allreduce

Collective operations are critical for a large number of dis-
tributed GPU applications [9, 23]. In this section, we will ex-
plore the performance of collective operations by measuring
the performance of the allreduce algorithm on ComP-Net,
both in isolation, and in the context of machine learning
workloads.

In the allreduce collective operation, each node combines
the contents of all participating nodes’ bufers using a user-
speciied arithmetic operation. For the CPU and Inter-Kernel
baselines, we use the allreduce implementation provided
by Baidu [6]. This design implements an allreduce using
nonblocking send and receive operations, with computation
performed on the CPU or the GPU.
The proposed intra-kernel allreduce design uses a multi-

ring algorithm that maximizes GPU and NIC utilization with
ine-grained overlap of communication and computation.
The number of rings is deined by the number of work-groups
participating in the allreduce on each GPU. In Rinдi ,WGi on
Kernel/GPU of process P receives data fromWGi of process
P − 1 and sends data toWGi of process P + 1. The ideal

0.6

0.8

1

1.2

1.4

0 4 8 12 16 20 24 28 32 36

R
el

at
iv

e
S

p
ee

d
u

p

Number of GPU Nodes in Reduction

ComP-Net dGPU APU

Inter-Kernel CPU

(a) Performance w.r.t dGPU.

0

0.2

0.4

0.6

0.8

1

1.2

0 4 8 12 16 20 24 28 32 36
E

n
er

g
y
 C

o
n

su
m

p
ti

o
n

Number of GPU Nodes in Reduction

ComP-Net dGPU APU

(b) Energy consumption w.r.t dGPU.

Figure 10: Performance and energy of diferent net-

working techniques on allreduce of diferent input

sizes.

number of work-groups (rings) per process is a function of
the message-size, chunk size, and bandwidth of the network.

Figure 10 shows a strong-scaling study of a 64MB allreduce
operation on all the evaluated conigurations. In Figure 10a,
we see that, for small number of nodes, the GPU results all
look similar, since the average problem size per GPU is large
and network latencies do not signiicantly impact perfor-
mance. As the number of nodes increase and the amount of
work per GPU decreases, the performance beneits of ComP-
Net over competing approaches (except APU) becomes more
pronounced. Eventually, the problem size per node becomes
small enough where the reduction is optimally calculated
on the CPU. Figure 10b shows the energy consumption of
ComP-Net compared to other approaches. We observe that
ComP-Net is 50% more energy eicient than both dGPU and
APU baselines.

5.4.1 Machine Learning. Deep learning workloads typically
use clusters of GPUs to accelerate training and inference
of neural networks. For these results, we will focus on the
most computationally intensive part, which is training the
networks using stochastic gradient descent (SGD) with back-
propagation. In distributed SGD, an allreduce operation is
used to combine the contents of each GPU’s gradient matrix
with that of every other GPU. Depending on the number
of GPUs participating in the training phase, the allreduce

Command Processor Networking PACT ’18, November 1–4, 2018, Limassol, Cyprus

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

AlexNet AN4

LSTM

CIFAR MNIST

Conv

MNIST

Hidden

Average

P
ro

je
ct

ed
 S

p
ee

d
u

p

CPU Inter-Kernel dGPU APU ComP-Net

Figure 11: Projected speedups on CNTK workloads

with intra-kernel allreduce on ComP-Net.

operation can become a signiicant bottleneck in the appli-
cation. For our studies, we have selected ive machine learn-
ing workloads from a variety of application domains from
the Microsoft Cognitive Toolkit [1]. Figure 11 shows how
ComP-Net improves performance of GPU training of neural
networks on a cluster of 8 nodes with a single GPU each.
The results are obtained via a combination of simulation
using the parameters described in Table 1 and real hardware
runs on the Stampede supercomputer [38]. The diference
between the experiments is the device and networking policy
(intra- vs. inter-kernel) used for the reduction.

We observe that the biggest jump in performance occurs
when switching from a CPU-based reduction to a GPU-based
one. Further optimizing the allreduce portion of the training
phase through ComP-Net improves total workload perfor-
mance over a dGPU baseline by 5% on average. However,
depending on how much the application is bound by net-
working, that number can vary from 11% in AN4 LSTM to
2% in CIFAR.

6 RELATED WORK

We are aware of one other work that attempts to leverage
an on-chip CP to accelerate GPU workloads. Orr et al. [30]
implement the channels programming abstraction [11] on
GPUs by using on-chip CPs to perform frequent and complex
scheduling decisions.

A few industry eforts optimize GPU networking through
an inter-kernel programming interface. GPUDirect RDMA [21],
enables IniniBand NICs to directly access GPU local memory
without intermediate data copies. GPUDirect Async [2, 34]
implements pre-registration of network operations that can
occur asynchronously when a kernel completes.
A number of work implement intra-kernel networking

while avoiding CPU helper threads. GPU-TN [19] provides an
intra-kernel networking scheme by using amechanism based
on Portals 4 triggered operations [35]. GPU Global Address
Space (GGAS) [27] implements intra-kernel networking by
adding explicit hardware in the GPU to support a cluster-
wide global address space. Oden et al. [29], GPUrdma [10],

and Potluri et al. [32] all explore techniques to implement
IniniBand entirely on the GPU. Unfortunately, these works
either have challenges with performance [29] or data visibil-
ity [10, 32] related to the GPU’s relaxed memory consistency
model. Klenk et al. [17, 18] explore a number of techniques
and communication models to support communication di-
rectly from theGPU and show good performance in a number
of cases. NVSHMEM uses an OpenSHMEM-like interface to
perform intra-kernel communication with other GPUs that
reside on the same node [33].

There are a number of works that support GPU network-
ing through helper threads on the host CPU. GPUNet [16]
provides a socket-based abstraction for GPUs. Both Dis-
tributed Computing for GPU Networks (DCGN) [37] and
dCUDA [12] implement a device-side MPI library for GPU
kernels that attempts to hide long-latency GPU network
events across the cluster. Gravel [31] optimizes irregular
GPU messaging applications by employing host-side coalesc-
ing of network operations. Gravel is unique among these
works in that it focuses solely on APUs.

7 CONCLUSION

In this work, we improved the performance and energy ei-
ciency of intra-kernel communication using a lesser known
feature of modern GPUs: embedded microprocessors that
are typically referred to as Command Processors (CPs). Our
solution, which we call Command Processor Networking
(ComP-Net), moves the network service thread from the
host CPU over to the GPU-resident CP. In the paper, we
described the ComP-Net programming model, discussed a
detailed mechanism for GPU/CP synchronization, and imple-
mented architectural modiications to reduce cache thrashing
between the GPU and CP. Overall, we show that ComP-Net
can improve application performance up to 20% and provide
up to 50% energy reduction of networking threads vs. other
GPU networking solutions on a Jacobi stencil, allreduce col-
lective, and machine learning workloads.

ACKNOWLEDGMENTS

AMD, the AMD Arrow logo, and combinations thereof are
trademarks of Advanced Micro Devices, Inc. Results were
obtained in part using resources from the Texas Advanced
Computing Center. This research was partially supported by
the US Department of Energy under the PathForward pro-
gram, the National Science Foundation under grants 1745813
and 1725743, and Fundação para a Ciência e a Tecnologia
(FCT) under project UID/CEC/50021/2013. Any opinions,
indings, conclusions or recommendations expressed herein
are those of the authors and do not necessarily relect the
views of the DoE, NSF, or other sponsors.

PACT ’18, November 1–4, 2018, Limassol, Cyprus M. LeBeane et al.

REFERENCES
[1] Amit Agarwal, Eldar Akchurin, Chris Basoglu, Guoguo Chen, Scott

Cyphers, Jasha Droppo, Adam Eversole, Brian Guenter, Mark Hille-

brand, T. Ryan Hoens, Xuedong Huang, Zhiheng Huang, Vladimir

Ivanov, Alexey Kamenev, Philipp Kranen, Oleksii Kuchaiev, Wolfgang

Manousek, Avner May, Bhaskar Mitra, Olivier Nano, Gaizka Navarro,

AlexeyOrlov, Hari Parthasarathi, Baolin Peng,Marko Radmilac, Alexey

Reznichenko, Frank Seide, Michael L. Seltzer, Malcolm Slaney, Andreas

Stolcke, Huaming Wang, Yongqiang Wang, Kaisheng Yao, Dong Yu, Yu

Zhang, and Geofrey Zweig. 2014. An Introduction to Computational

Networks and the Computational Network Toolkit. Technical Report.

Microsoft. https://www.microsoft.com/en-us/research/wp-content/

uploads/2014/08/CNTKBook-20160217.pdf

[2] Elena Agostini, Davide Rossetti, and Sreeram Potluri. 2017. Oloading

Communication Control Logic in GPU Accelerated Applications. In

Intl. Symp. on Cluster, Cloud and Grid Computing (CCGrid). https:

//doi.org/10.1109/CCGRID.2017.29

[3] AMD. 2015. The AMD gem5 APU Simulator: Modeling Heterogeneous

Systems in gem5. http://gem5.org/GPU_Models

[4] AMD. 2017. Graphics Core Next Architecture, Generation 3 ISA. http://

gpuopen.com/compute-product/amd-gcn3-isa-architecture-manual/

[5] AMD. 2018. HIP: Heterogeneous-computing Interface for Portability.

http://rocm-developer-tools.github.io/HIP/

[6] Baidu. 2018. baidu-allreduce. https://github.com/baidu-research/

baidu-allreduce

[7] Matthew Baker, Swen Boehm, Aurelien Bouteiller, Barbara Chap-

man, Robert Cernohous, James Culhane, Tony Curtis, James Dinan,

Mike Dubman, Karl Feind, Manjunath Gorentla Venkata, Max Gross-

man, Khaled Hamidouche, Jef Hammond, Yossi Itigin, Bryant Lam,

David Knaak, Jef Kuehn, Jens Manser, Tifany M. Mintz, David Ozog,

Nicholas Park, Steve Poole, Wendy Poole, Swaroop Pophale, Sreeram

Potluri, Howard Pritchard, Naveen Ravichandrasekaran, Michael Ray-

mond, James Ross, Pavel Shamis, Sameer Shende, and Lauren Smith.

2018. OpenSHMEM Speciication. http://openshmem.org/site/sites/

default/site_iles/OpenSHMEM-1.4.pdf

[8] Nathan Binkert, Somayeh Sardashti, Rathijit Sen, Korey Sewell,

Muhammad Shoaib, Nilay Vaish, Mark D. Hill, David A. Wood,

Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi,

Arkaprava Basu, Joel Hestness, Derek R. Hower, and Tushar Krishna.

2011. The gem5 Simulator. ACM SIGARCH Computer Architecture

News 39, 2 (2011), 1. https://doi.org/10.1145/2024716.2024718

[9] Ching-Hsiang Chu, Khaled Hamidouche, Akshay Venkatesh, Am-

mar Ahmad Awan, and Dhabaleswar K. Panda. 2016. CUDA Ker-

nel Based Collective Reduction Operations on Large-scale GPU Clus-

ters. In Intl. Symp. on Cluster, Cloud and Grid Computing (CCGrid).

https://doi.org/10.1109/CCGrid.2016.111

[10] Feras Daoud, AmirWatad, andMark Silberstein. 2016. GPUrdma: GPU-

side Library for High Performance Networking from GPU Kernels. In

Intl. Workshop on Runtime and Operating Systems for Supercomputers

(ROSS). 6:1ś6:8. https://doi.org/10.1145/2931088.2931091

[11] Benedict R. Gaster and Lee Howes. 2012. Can GPGPU Programming Be

Liberated from the Data-Parallel Bottleneck? Computer 45, 8 (August

2012), 42ś52. https://doi.org/10.1109/MC.2012.257

[12] Tobias Gysi, Jeremia Bär, and Torsten Hoeler. 2016. dCUDA: Hardware

Supported Overlap of Computation and Communication. In Intl. Conf.

for High Performance Computing, Networking, Storage and Analysis

(SC) (SC ’16). Article 52, 12 pages. https://doi.org/10.1109/sc.2016.51

[13] Khaled Hamidouche, Akshay Venkatesh, Ammar Ahmad Awan, Hari

Subramoni, Ching-Hsiang Chu, and Dhabaleswar K. Panda. 2016.

CUDA-Aware OpenSHMEM: Extensions and Designs for High Per-

formance OpenSHMEM on GPU Clusters. Parallel Comput. 58 (2016),

27ś36. https://doi.org/10.1016/j.parco.2016.05.003

[14] Derek R. Hower, Blake A. Hechtman, Bradford M. Beckmann, Bene-

dict R. Gaster, Mark D. Hill, Steven K. Reinhardt, and David A. Wood.

2014. Heterogeneous-race-free Memory Models. In Intl. Conf. on Ar-

chitectural Support for Programming Languages and Operating Systems

(ASPLOS).

[15] IniniBand Trade Association. 2000. IniniBand Architecture Speciica-

tion: Release 1.0.2. http://www.ininibandta.org/content/pages.php?

pg=technology_download

[16] Sangman Kim, Seonggu Huh, Yige Hu, Xinya Zhang, Emmett Witchel,

AmirWated, andMark Silberstein. 2014. GPUnet: Networking Abstrac-

tions for GPU Programs. In USENIX Conf. on Operating Systems Design

and Implementation (OSDI). 201ś216. https://doi.org/10.1145/2963098

[17] Benjamin Klenk, Lena Oden, and Holger Froning. 2014. Analyzing

Put/Get APIs for Thread-Collaborative Processors. In Intl. Conf. on

Parallel Processing (ICPP) Workshops. https://doi.org/10.1109/ICPPW.

2014.61

[18] Benjamin Klenk, Lena Oden, and Holger Froning. 2015. Analyzing

Communication Models for Distributed Thread-collaborative Proces-

sors in Terms of Energy and Time. In Intl. Symp. on Performance Anal-

ysis of Systems and Software (ISPASS). https://doi.org/10.1109/ISPASS.

2015.7095817

[19] Michael LeBeane, Khaled Hamidouche, Brad Benton, Mauricio Bre-

ternitz, Steven K. Reinhardt, and Lizy K. John. 2017. GPU Triggered

Networking for Intra-Kernel Communications. In Proc. of the Intl. Conf.

for High Performance Computing, Networking, Storage and Analysis

(SC).

[20] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P.

Jouppi. 2009. McPAT: An Integrated Power, Area, and TimingModeling

Framework for Multicore and Manycore Architectures. In Intl. Symp.

on Microarchitecture (MICRO). 469ś480.

[21] Mellanox. 2017. Mellanox OFED GPUDirect RDMA. http://www.

mellanox.com/page/products_dyn?product_family=116

[22] Mellanox. 2018. IniniBand Performance. http://www.mellanox.com/

page/performance_ininiband

[23] Nvidia. 2016. Fast Multi-GPU collectives with NCCL. https://devblogs.

nvidia.com/parallelforall/fast-multi-gpu-collectives-nccl/

[24] Nvidia. 2017. GPU Applications. http://www.nvidia.com/object/

gpu-applications-domain.html

[25] Nvidia. 2018. CUDA Toolkit 9.2. https://developer.nvidia.com/

cuda-toolkit

[26] Nvidia. 2018. Nvidia DGX-2. https://www.nvidia.com/en-us/

data-center/dgx-2/

[27] Lena Oden and Holger Froning. 2013. GGAS: Global GPU Address

Spaces for Eicient Communication in Heterogeneous Clusters. In Intl.

Conf. on Cluster Computing (CLUSTER). 1ś8. https://doi.org/10.1109/

cluster.2013.6702638

[28] Lena Oden, Holger Froning, and Franz-Joseph Pfreundt. 2014.

Ininiband-Verbs on GPU: A Case Study of Controlling an Inini-

band Network Device from the GPU. In Intl. Conf. on Parallel Dis-

tributed Processing Symposium Workshops (IPDPSW). 976ś983. https:

//doi.org/10.1109/ipdpsw.2014.111

[29] Lena Oden, Benjamin Klenk, and Holger Froning. 2014. Energy-

Eicient Collective Reduce and Allreduce Operations on Distributed

GPUs. In Intl. Symp. on Cluster, Cloud and Grid Computing (CC-

Grid). Institute of Electrical and Electronics Engineers (IEEE), 483ś492.

https://doi.org/10.1109/ccgrid.2014.21

[30] Marc S. Orr, Bradford M. Beckmann, Steven K. Reinhardt, and David A.

Wood. 2014. Fine-grain Task Aggregation and Coordination on GPUs.

In Intl. Symp. on Computer Architecture (ISCA). 181ś192. http://dl.acm.

org/citation.cfm?id=2665671.2665701

https://www.microsoft.com/en-us/research/wp-content/uploads/2014/08/CNTKBook-20160217.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2014/08/CNTKBook-20160217.pdf
https://doi.org/10.1109/CCGRID.2017.29
https://doi.org/10.1109/CCGRID.2017.29
http://gem5.org/GPU_Models
http://gpuopen.com/compute-product/amd-gcn3-isa-architecture-manual/
http://gpuopen.com/compute-product/amd-gcn3-isa-architecture-manual/
http://rocm-developer-tools.github.io/HIP/
https://github.com/baidu-research/baidu-allreduce
https://github.com/baidu-research/baidu-allreduce
http://openshmem.org/site/sites/default/site_files/OpenSHMEM-1.4.pdf
http://openshmem.org/site/sites/default/site_files/OpenSHMEM-1.4.pdf
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1109/CCGrid.2016.111
https://doi.org/10.1145/2931088.2931091
https://doi.org/10.1109/MC.2012.257
https://doi.org/10.1109/sc.2016.51
https://doi.org/10.1016/j.parco.2016.05.003
http://www.infinibandta.org/content/pages.php?pg=technology_download
http://www.infinibandta.org/content/pages.php?pg=technology_download
https://doi.org/10.1145/2963098
https://doi.org/10.1109/ICPPW.2014.61
https://doi.org/10.1109/ICPPW.2014.61
https://doi.org/10.1109/ISPASS.2015.7095817
https://doi.org/10.1109/ISPASS.2015.7095817
http://www.mellanox.com/page/products_dyn?product_family=116
http://www.mellanox.com/page/products_dyn?product_family=116
http://www.mellanox.com/page/performance_infiniband
http://www.mellanox.com/page/performance_infiniband
https://devblogs.nvidia.com/parallelforall/fast-multi-gpu-collectives-nccl/
https://devblogs.nvidia.com/parallelforall/fast-multi-gpu-collectives-nccl/
http://www.nvidia.com/object/gpu-applications-domain.html
http://www.nvidia.com/object/gpu-applications-domain.html
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://www.nvidia.com/en-us/data-center/dgx-2/
https://www.nvidia.com/en-us/data-center/dgx-2/
https://doi.org/10.1109/cluster.2013.6702638
https://doi.org/10.1109/cluster.2013.6702638
https://doi.org/10.1109/ipdpsw.2014.111
https://doi.org/10.1109/ipdpsw.2014.111
https://doi.org/10.1109/ccgrid.2014.21
http://dl.acm.org/citation.cfm?id=2665671.2665701
http://dl.acm.org/citation.cfm?id=2665671.2665701

Command Processor Networking PACT ’18, November 1–4, 2018, Limassol, Cyprus

[31] Marc S. Orr, Shuai Che, Bradford M. Beckmann, Mark Oskin, Steven K.

Reinhardt, and David A. Wood. 2017. Gravel: Fine-Grain GPU-Initiated

Network Messages. In Proc. of the Intl. Conf. for High Performance

Computing, Networking, Storage and Analysis (SC).

[32] S. Potluri, A. Goswami, D. Rossetti, C. J. Newburn, M. G. Venkata,

and N. Imam. 2017. GPU-Centric Communication on NVIDIA GPU

Clusters with IniniBand: A Case Study with OpenSHMEM. In Intl.

Conf. on High Performance Computing (HiPC). 253ś262. https://doi.

org/10.1109/HiPC.2017.00037

[33] Sreeram Potluri, Nathan Luehr, and Nikolay Sakharnykh. 2016. Sim-

plifying Multi-GPU Communication with NVSHMEM. http://

on-demand-gtc.gputechconf.com/gtc-quicklink/7D7mU

[34] Davide Rossetti. 2015. GPUDirect Async. http://on-demand.

gputechconf.com/gtc/2015/presentation/S5412-Davide-Rossetti.pdf

[35] Sandia National Laboratories. 2017. The Portals 4.1 Network Program-

ming Interface. http://www.cs.sandia.gov/Portals/portals41.pdf

[36] Sandia National Laboratories. 2018. Sandia OpenSHMEM. https:

//github.com/Sandia-OpenSHMEM/SOS

[37] Jef A. Stuart and John D. Owens. 2009. Message Passing on Data-

parallel Architectures. In Intl. Symp. on Parallel Distributed Processing

(IPDPS). 1ś12. https://doi.org/10.1109/ipdps.2009.5161065

[38] TACC. 2015. Stampede Supercomputer User Guide. https://portal.

tacc.utexas.edu/user-guides/stampede

[39] TOP500.org. 2018. Highlights - June 2018. https://www.top500.org/

lists/2018/06/highlights/

https://doi.org/10.1109/HiPC.2017.00037
https://doi.org/10.1109/HiPC.2017.00037
http://on-demand-gtc.gputechconf.com/gtc-quicklink/7D7mU
http://on-demand-gtc.gputechconf.com/gtc-quicklink/7D7mU
http://on-demand.gputechconf.com/gtc/2015/presentation/S5412-Davide-Rossetti.pdf
http://on-demand.gputechconf.com/gtc/2015/presentation/S5412-Davide-Rossetti.pdf
http://www.cs.sandia.gov/Portals/portals41.pdf
https://github.com/Sandia-OpenSHMEM/SOS
https://github.com/Sandia-OpenSHMEM/SOS
https://doi.org/10.1109/ipdps.2009.5161065
https://portal.tacc.utexas.edu/user-guides/stampede
https://portal.tacc.utexas.edu/user-guides/stampede
https://www.top500.org/lists/2018/06/highlights/
https://www.top500.org/lists/2018/06/highlights/

	Abstract
	1 Introduction
	2 Background
	3 Motivating ComP-Net
	3.1 High Latencies
	3.2 Poor Scalability
	3.3 The Case for ComP-Net

	4 ComP-Net Architecture
	4.1 ComP-Net API
	4.2 ComP-Net Design

	5 Evaluation
	5.1 Experimental Setup
	5.2 Microbenchmarks
	5.3 Jacobi 2D Stencil
	5.4 Allreduce

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

